
FINC 748: Investments           Fall 2003 
 
Lecture Note 0: Math Review 

 
 
The purpose of this note is to collect, in one place, most of the math needed to 

understand finance at the MBA level. This note is not intended to be overly technical, 

and is not chock-full of mathematical proofs. Rather, it is a chatty roadmap of facts and 

examples that will aid our understanding, without digressing too much within the body 

of the course. Ideally, you should read this note and understand it in full by the second 

week of class. You may later on find it helpful to use this note as a reference, as we 

encounter a particular mathematical concept, formula or calculation in our course.  

 

 THE BASICS  

Sets, Functions and Graphs 

A set is a collection of elements. These elements may be numbers, names or 

anything at all.  

 

Example 1: We might define X as the set of all first year MBA students at the 

Freeman School today. In mathematical notation, this set is represented as 

X={name1, name2,…., name 130}, where the 130 names are those of you and your 

classmates. Frequently, sets are denoted in text books as follows: 

X={x : x is a Freeman first year MBA student} 

This is read as: “X is the set of all elements x such that x has a certain property” 

(here, the property is that x is a Freeman first year MBA student). Note that usually, 

sets are represented by upper case letters while elements of the set are represented as lower 

case letters. 

 

Example 2: Y={……,-3,-2,-1,0,1,2,3,…….} is the set of all integers 

While in Example 1, we had a finite set of elements, in this example, we have a set of 

an infinite number of elements. 
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A function f is a relation (or a rule) defined between two sets X and Y. The function 
associates to each value in the set X, a corresponding value (and only one 
corresponding value) in the set Y. X is called the domain of the function, and Y is 
called the co-domain of the function.  
The set of all elements in Y associated with elements of X by the function is called 
the range of the function. Note that the range of the function may or may not be the 
entire set Y. Functions are sometimes denoted as :f X Y . This notation is, 

however, rare. More frequently, one sees functions denoted as: 

( );  Xy f x x= ∈    … (1) 

The ∈ in the above equation is the math symbol for “belongs to”. That is, Equation 
(1) says that for every element x that belongs to the set X, the function f associates a 
value y. Let’s see some examples: 
 

Example 3: y x= + , the positive square root function 

What are the domain and range of this function? We know that only non-negative 
numbers have real square roots1, so this function is defined only for numbers 0 and 
higher. Further, we can take square roots not only of numbers such as 4, 9, and 16, 
but of 225.25, 174.5689 and so on. So we can conclude that the domain of this 
function is the set of all non-negative real numbers.  It can be seen that the range of this 
function is also the set of all non-negative real numbers. Let’s look at a graph of this 
function.  
 

The positive square root function
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1 Square roots of negative numbers are called imaginary numbers (as opposed to real numbers), 
and play a very important role in engineering and the physical sciences. But since we deal only 
with real numbers in finance, we will safely ignore this fact, and behave here as if imaginary 
numbers do not exist. 
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Example 4:  I have graphed below four linear functions, i.e. functions whose graphs 

are straight lines. These are functions that are of the general form: y ax b= + . In the 

above equation, a is called the slope of the function, while b is called the vertical 

intercept of the function. 

 

Some linear functions
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Note two things:  

1) The vertical intercept b from the above equation is simply the point at which the 

graph intersects the vertical, or Y-axis.  

2) Positive slopes correspond to upward sloping lines, while negative slopes 

correspond to downward sloping lines. 

 

Example 5: Let’s now see how a quadratic function looks like. The general form of a 

quadratic function is 2y ax bx c= + + . Let us see two specific quadratic functions: 

5a: 23 4 1y x x= + +  

5b: 23 4 1y x x= − − −  
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The first function is: 23 4 1y x x= + + . This function is bowl-shaped, as you can see 

below. Such functions are called convex in shape. 

A convex quadratic function
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The next function, graphed below, is 23 4 1y x x= − − − . This function is the shape of an 

inverted bowl. Such functions are called concave in shape. 

A concave quadratic function
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Note that convexity and concavity are not properties of quadratic functions alone. Most 

(and I am deliberately being quite loose with “most” here) smooth, non-linear functions 

can be categorized as being either convex or concave. The shape of functions turns out to 

be very important, not only in this course, but in much of economics and finance. In 

particular, I will expect you to recognize the shape of a function when you see one. 
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Example 6: Let’s now look at a couple of functions that we encountered in option 

pricing.  

6a: xy e=  

The exponential function
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This function is called the exponential function. The number e is a special number in 

mathematics equal in value to 2.71828…., and is called the base of the natural 

logarithm. 

 

6b: ln( )y x=  

The logarithm function
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This function is called the (natural) logarithm function. As we shall see in later 

sections, the exponential and logarithm functions play a very important role in the 

mathematics of finance. 
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Before we go ahead, let us stop and think: why do we need functions in economics 

and finance? The answer is: because we need a way to quantify the relationship 

between two variables of interest. For example, we might want to understand how 

the market value of a company changes with the amount of debt it has. Or we might 

want to know the effect of a change in interest rates on the growth in Gross Domestic 

Product (GDP) of the economy. Or we might want to understand the impact of a 

stock’s volatility on the price of a call option written on that stock. 

 

In Examples 3 through 6, we looked at the basics of univariate calculus, i.e. functions 

of one variable. Each value of y depended only on the value of x. As x varies (which is 

why it is called a variable), the corresponding value of the function y changes along 

with it.  This is perfectly fine for representing some relationships. But frequently, an 

economic quantity might depend on more than one variable. For instance, GDP 

growth might depend on government spending, in addition to interest rates. What 

then? We can easily extend the logic of the previous examples to handle this new 

wrinkle. Let’s now dig a bit deeper into the basics of multivariate calculus (more 

than one variable).  

Example 7: Let’s look at the function: 2 2( , )z f x y x y= = −  
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Here, since we have two variables, we need two axes to represent their variation. We 

have represented the function value f(x,y) for each combination of x and y on the 

third axis.  

 

If this graph appears too confusing, we have to understand that there are two things 

changing at the same time at every point. To get clearer pictures in our mind, we 

frequently fix the value of one variable, and see what happens to the function value 

when the other variable is allowed to change. For example, fixing the value of y at -3,  

0 and 2 gives us the following graph (rather, three pictures on the same graph). 
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The best way to think of this graph is as an assembly of vertical “slices” of the 

original 3-dimensional graph from last page at the points y=-3, y=0, and y=+2. 

 

 UNIVARIATE CALCULUS 

Continuity 

The concept of a continuous function is central to all calculus. Economists routinely 

write statements like “we assume that the so-and-so function is twice continuously 

differentiable” in journal articles and in text books. What does it mean when they say 

such high-falutin’ things? 



FINC 748 – Math Review – Fall 2003 

 8

The best way to understand this concept is, not surprisingly, pictures. Geometrically 

speaking, a function is continuous if its graph has no breaks. All the functions we 

have seen so far in Examples 3 through 7 are continuous. Let us look at a 

discontinuous function called the step function to see the difference.  

 

Example 8: The step function 

This function can be written as: 
+3,  0

( ) =
3,  0

x
y g x

x
≥

= − <
 

The discontinuous step function
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At the point x=0, the function abruptly jumps from a value of -3 to +3. The transition 

from -3 to +3 is not continuous or smooth. That’s why this is a discontinuous 

function. 

 

Differentiability and derivatives of a (univariate) function 

The derivative2 of a (univariate) function is defined as follows.  

Let y=f(x) be a function. Then the derivative of f(x) with respect to (henceforth w.r.t.)  

x is defined as:  '

0

( ) ( )( ) limdy f x f xf x
dx ∆→

+ ∆ −
= =

∆
 … (2) 

                                                 
2 Do not confuse this mathematical term “derivative” with the term “derivative” in finance, as in 
“Options, futures and other derivatives” by John C. Hull 
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Example 5a (extended): To see what this really means, let us take a function, 
23 4 1y x x= + + . You will recognize this as the quadratic function from Example 5a. 

Let us try and find the derivative of this function at the point x=3. I have reproduced 

below the graph from Example 5a, along with a few additions. Notice I have focused 

only on (zoomed into, if you will) the part of the graph for x ≥ 0. 

The derivative
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Let’s pick an initial ∆=1. The line denoted Rise covers a vertical distance of 

( ) ( ) (3 1) (3) (4) (3) 25f x f x f f f f+ ∆ − = + − = − = units. The line denoted Run is 

equal to ∆=1. Dividing one by the other, the thick diagonal line of the right triangle 

has a slope equal to: 
( ) ( ) (4) (3) 25

1
f x f x f fRise

Run
+ ∆ − −

= = =
∆

. But the derivative is 

defined as the limit of his slope as ∆ approaches 0. It is easy to see that as ∆ → 0, the 

diagonal line approaches the tangent to the function at x=3 (the dotted line). Thus, 

the slope of the tangent at x=3 will give us the derivative of the function at that 

point. It turns out that the slope of the tangent there is 22, which is the derivative of 

the function 23 4 1y x x= + + at the point x=3. What about at other points? Do we 
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have to do this exercise at every point on the graph, i.e. for x =-3, -1, 0, 2,… etc.? Not 

really. The above exercise was only for explaining the concept of the derivative. 

There are rules for differentiating (finding the derivative) of many, many functions3. 

The most basic rule of them all is that the derivative of xn is n.xn-1. Let us use this rule 

in our simple example. The derivative of 23 4 1y x x= + + is 3(2x)+4= 6x+4. At the 

point x=3, this can be evaluated as 6(3)+4=22, as advertised in the last page! 

 

Now, a function is differentiable if we can find its derivative at every point at which 

the function is defined. In plain English, this means that a function is differentiable at 

a given point, if we can draw an obvious tangent to it at that point. Differentiability 

turns out to be a very important property of functions, just like its first cousin, 

continuity. Again, to understand this concept, let’s look at the example of a function 

that is not differentiable at a certain point. 

 

Example 9: Consider the absolute value function y=g(x)=|x|. This function returns 

the absolute value (magnitude) of any real number, ignoring its sign. So, it can be 

defined more clearly as:  
  ,  0

( ) =
,  0

x x
y g x

x x
≥

= − <
 

As usual, let’s look at a graph of this function.  

The absolute value function
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3 Most basic calculus text books will give you the rules of differentiation 
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It should be obvious that there is no well-defined tangent that we can draw to this 

function at the point x=0. In fact, there are many, many tangents (an infinite number 

of them) that we could draw through the point x=0. A couple of possible tangents 

are shown in the following graph as dashed lines. Therefore, it is clear that this 

function is not differentiable at the origin –the point (x=0,y=0). 

Tangents at x =0

-6

-4

-2

0

2

4

6

8

10

12

-10 -5 0 5 10

x

y=
g(

x)

 
 

Note carefully: The function above is continuous at all points, although not 

differentiable at x=0. This leads us to a couple of observations that are often useful: 

 If a function is differentiable at all points, then it is continuous at all points 

 Even if a function is continuous at all points, it need not be differentiable at all 

points 

 

Higher Order Derivatives 

We have so far learned that if we differentiate a function once, we essentially plot its 

slope at all points at which the function is defined. For instance, in the extension to 

Example 5a, we found that the derivative of the function 2( ) 3 4 1f x x x= + + is 

'( ) 6 4f x x= + . Technically, this is called the first derivative of the function f(x). this 

means that we have differentiated the original function once. What if we 
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differentiate '( ) 6 4f x x= +  w.r.t. x again? The answer to this computation is called 

the second derivative of f(x). Now the derivative of  '( ) 6 4f x x= + is ''( ) 6f x = . We 

can differentiate this one more time to get '''( ) 0f x = and so on. So, for any function 

f(x), by successive differentiation, we can obtain all higher order derivatives – first, 

second, third, fourth and so on … 

 

Derivatives: A rate of change interpretation 

 

Derivatives are very nifty math devices as they can be interpreted as rates of change. 

Let us understand this interpretation by means of a simple example. 

 

Example 10: (Galileo’s experiment)  

 

In the 1580s, Galileo Galilei, the famous Italian physicist (while studying at the 

University of Pisa) is supposed to have dropped a 10-pound ball and a 1-pound ball, 

both from the top of the famous leaning tower of Pisa, in order to prove that the two 

bodies, in spite of their difference in mass, fall at the same acceleration, thereby 

shattering the Aristotlean conception that the 10-pound ball will fall at a rate 10 

times faster than the 1-pound ball. Although science historians doubt whether 

Galileo actually performed this experiment, we now know that his basic thesis was 

indeed correct. Both bodies do fall at the same acceleration due to the Earth’s gravity 

which is denoted in physics by the letter g, and has a value of 9.8 meters/second2. 

 

If we drop a ball from the top of a tower 122.5 meters high, the distance traveled by 

the ball towards earth in t seconds is given by the familiar equation 1 2
2( )S t gt= . This 

is a quadratic function, as we know. A graph of this function is shown on the next 

page. 
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Galileo's experiment
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As can be seen from the above graph, the ball takes 5 seconds to traverse the 122.5 

meters and reach earth. It covers 4.9 meters in the first second, 14.7 meters (=19.6-4.9) 

in the second second, 24.5 meters (=44.1-19.6) in the third second, 34.3 meters (=78.4-

44.1) in the fourth second, and the last 44.1 meters (=122.5-78.4) in the final, fifth 

second. That means the ball is gathering speed as time passes. There are two things 

to note from this analysis: 

1) First, the rather obvious observation that the distance S (function) traveled by the 

ball is increasing as time t (variable) increases. Such a function is said to be an 

increasing function. Put another way, the rate of change in the function is positive 

at all times t. Mathematically speaking, this corresponds to a positive first 

derivative, i.e. S(t) is increasing because S’(t) is positive at all points t. 

2) There is another, slightly more subtle observation: the rate of change is not 

uniform. The distance traveled per second, (or the rate of change of distance) 

a.k.a. the velocity of the ball is increasing. This means the function is increasing at 

an increasing rate! This corresponds to the fact that the first derivative itself is an 

increasing function, i.e. the second derivative S’’(t) is also positive.  
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Using the rules of differentiation, we have the following quantities: 

Distance:  1 2
2( )S t gt=  

Velocity:  ( ) '( )v t S t gt= = >0 ⇒ Distance is increasing with time 

Acceleration:  '( ) ''( )v t S t g= = >0 and constant ⇒ Velocity is increasing at a 

constant rate 

 

It is this interpretation of derivatives as successive rates of change that give calculus 

much of its elegance and content. (It also gives us an insight into why Isaac Newton 

had to practically invent the entire domain of calculus to describe his laws of 

motion)4. 

 

It is useful to see the distance, velocity, and acceleration, all as functions of time in 

one picture, as in the next page. 

                                                 
4 Note that Gottfried Wilhelm Leibnitz (1646-1716) is also (rightly) jointly credited along with 
Newton for the invention of calculus 
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Derivatives and Curvature 

Remember convexity and concavity of functions? It turns out that knowledge of the 

first and second derivatives of a function enables us to tell which functions are 

convex and which are concave, without even graphing them.  

 

Convexity: Let y=f(x) be a function. Choose two points x1 and x2 at which the function 

is defined. Then the function is said to be convex if the following property holds. 

1 2 1 2( ) ( ) (1 ) ( ),  where (1 ) ;  [0,1]f x f x f x x x xλ λ λ λ λ≤ + − = + − ∈  … (3) 

Geometrically, this simply means that the straight line joining the values of the 

function at x1 and x2 is always above the graph of the function between x1 and x2. The 

following picture helps illustrate this property. 

Galileo's experiment: A Convex function
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You will recognize this function as the same one from Example 10. Here, I have 

picked x1=1, x2=4. The straight line joining the function values at 1 and 4 is called the 

secant line. (As an aside, in the limit, as we reduce the points x1 and x2 to zero, the 

secant gradually becomes the tangent at the terminal point). 

 

Notice that the secant always lies above the curve (function) at very point in between 

these two points. And this happens no matter which x1 and x2 we pick! This is the 

defining property of a convex function. As we vary the value of λ from 0 to 1, the 
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value of 1 2 (1 )x x xλ λ= + −  traces every point in between x1 and x2. Therefore, we 

should read 1 2 (1 )x x xλ λ= + −  as “every point between x1 and x2”. 

 

As I said before, derivatives give us more insight into the shape of a function., 

without this elaborate process of graphing the function. Convex functions have the 

property that ( ) 0f x′′ > i.e. the second derivative is positive. You should now go back 

and check that this is indeed true for Example 10 involving Galileo’s experiment.  

 

Concavity: As you might have guessed by now, concavity implies the opposite 

property for a function. Formally, a function y=f(x), (again picking two points x1 and 

x2 at which it is defined) is said to be concave if the following property holds. 

1 2 1 2( ) ( ) (1 ) ( ),  where (1 ) ;  [0,1]f x f x f x x x xλ λ λ λ λ≥ + − = + − ∈  … (4) 

Geometrically, again, this means the opposite of convexity. For concave functions, 

the straight line joining the values of the function at x1 and x2 (secant line) is always 

below the graph of the function between x1 and x2. Let us draw the picture of the 

(natural) logarithm function from Example 6b to illustrate concavity. 

The (natural) logarithm function: A concave function
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Concavity, as you might expect, means that ( ) 0f x′′ < , i.e. the second derivative is 

negative.  



FINC 748 – Math Review – Fall 2003 

 18

To summarize: 

 ( ) 0f x′ > : (Strictly) Increasing function  

( ) 0f x′ < : (Strictly) Decreasing function 

 ( ) 0f x′′ > : (Strictly) Convex function   … (5) 

( ) 0f x′′ < : (Strictly) Concave function    

 

Note: For a linear function, ( ) 0f x′′ = , which means that it is neither convex nor 

concave. 

  

 MULTIVARIATE CALCULUS 

Consider the function 2 2( , )f x y x y= − . As we discussed (in Example 7) above, this 

is a function of two variables. It turns out we can readily extend the concepts of 

continuity, differentiability, derivative and function curvature to this multivariate 

case. We only need to modify our notation somewhat. I will briefly summarize 

below what we need here. 

 

Differentiation 

We start studying multivariate calculus by looking at the change in the function 

changing one variable at a time, keeping all the other variables constant.  

 

Let’s say there us a multivariate function of n variables, 1 2( , , , )ny f x x x= . Then, 

we define the partial (first order) derivative of the function f w.r.t. xi, the ith variable 

as: 

1 2 , , 1 2 , ,

0

( , , , ) ( , , , )
lim i n i n

i
i

f x x x x f x x x xyf
x ∆→

+ ∆ −∂
= =

∂ ∆
 … (6) 

 

It should be clear from the above definition that we are considering the effect on the 

function of a change only in the ith variable, treating all other variables constant.  
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Higher order derivatives are defined in the same way. For example, 
2

2ii
i

yf
x

∂
=

∂
is the 

second order partial derivative of the function w.r.t. the ith variable xi. We also could 

define the cross partial derivative
2

ij
i j

yf
x x
∂

=
∂ ∂

, as the result of differentiating the 

function once with respect to the ith variable xi, and then by the jth variable xj. 

 

Example 11: Consider a simple production function that you would find in any basic 

microeconomics text book. The quantity of output produced by a firm Q depends on 

two inputs capital (k), and labor (l) according to the function: 
1/2 1/2( , )Q k l k l=  

This particular production function is called the Cobb-Douglas production 

function.  

 

In this simple world, starting with 100 units of capital and 25 units of labor, output 

is: 1/2 1/2(100,25) 100 25 10 5 50 unitsQ = = × =  

 

Using the rules of differentiation, we can compute partial derivatives with respect to 

both variables as follows: 

1/2 1/21
2k

QQ k l
k

−∂
= =

∂
 (remember to treat l as constant), and 

1/2 1/21
2l

QQ k l
l

−∂
= =

∂
 (remember to treat k as constant) 

Evaluating these derivatives at k=100, and l=25, we have: 

1/2 1/2

100, 25

1 100 25 0.25
2k l

Q
k

−

= =

∂
= =

∂
, and 1/2 1/2

100, 25

1 100 25 1
2k l

Q
l

−

= =

∂
= =

∂
 

The first-order partial derivative 
Q
k

∂
∂

 (
Q
l

∂
∂

) is interpreted as the marginal5 product 

of capital (labor) i.e. holding everything else constant, at the margin (given where we 

                                                 
5 Marginal quantities are of great importance in economic reasoning, and indeed in real life 
situations. At 3 AM before final exam day, students deciding whether to go to sleep trade off the 
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are), what will be the impact of a unit increase in capital (labor)? We can use these 

partial derivatives to evaluate the impact of say, 10 more units of capital, or 2 more 

units of labor. How? Let us see… 

We can write  

( , ) ( , ) .QQ Q k k l Q k l k
k

∂
∆ = + ∆ − ∆

∂
, and 

( , ) ( , ) .QQ Q k l l Q k l l
l

∂
∆ = + ∆ − ∆

∂
  … (7) 

which are shorthand for saying that we can make use of the marginal products for 

estimating the change in the function due to a k∆ units change of capital (holding 

the labor input constant) or a l∆ units change in labor (holding the capital input 

constant). 

 

Given that we currently have 100 units of capital and 25 units of labor, what is the 

marginal impact of an increase in 10 units of capital? Using the above formula, we 

have: 
100, 25

. 0.25 10 2.5 units
k l

QQ k
k = =

∂
∆ ∆ = × =

∂
. How good is this approximation? 

We know that 10 more units of capital take us to 110 units of capital, which means 

production will be: 1/2 1/2(110,25) 110 25 52.44 unitsQ = = , an increase of 2.44 units. 

As you can see from comparing 2.44 units with 2.50 units, the approximation is quite 

good. 

 

In fact, the smaller the value of k∆ , the better the approximation, and vice versa. Let 

us say we want to measure the impact of 44 more units of capital. The marginal 

product formula (7) gives us 
100, 25

. 0.25 44  11 units
k l

QQ k
k = =

∂
∆ ∆ = × =

∂
. But we 

know that the actual production with 44 more units of capital will be: 
1/2 1/2(144,25) 144 25 60 unitsQ = = , a change of 10 units 

                                                                                                                                                 
marginal value of  one more hour of studying (a bit more cramming) versus the marginal cost of the 
hour of study (fatigue from sleep deprivation). Note that at this point, the tradeoff is strictly 
between marginal quantities and not between total quantities (total hours studied in the last week 
or semester versus total time slept in the last week or semester). 
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Here, the approximation isn’t as good: 11 units compared with 10. Why is this 

happening? Recall that the partial derivative is calculated at an initial value of k=100. 

Recall also that the derivative is the slope of the function. The farther away we get 

from this number, the worse the approximation using the derivative, since the slope 

is changing more and more as we move away farther and farther from k=100. This is 

to be expected, as we are using a linear approximation to a non-linear function. 

 

Obviously, a similar exercise could be conducted for understanding the impact on 

production of an increase in labor inputs. We can see that the marginal impact on 

output of 2l∆ = , i.e. two more units of labor is given by: 

100, 25
. 1 2  2 units

k l

QQ l
l = =

∂
∆ ∆ = × =

∂
 

Holding capital at k=100 units, and increasing labor by 2l∆ = units to 27 units, we 

have 1/2 1/2(100,27) 100 27 51.96 unitsQ = = , an increase of 1.96 units which 

compares very well with the approximate estimate of 2 units from above. 

 

The next obvious question to ask is: What will happen if both capital and labor inputs 

change? It turns out we can extend the analysis of the last page to estimate the 

change in production due to a simultaneous change in both inputs. To do this we 

define the total derivative or total differential of a function with respect to changes 

in more than one variable.  

( , ) ( , ) . .Q QQ Q k k l l Q k l k l
k l

∂ ∂
∆ = + ∆ + ∆ − ∆ + ∆

∂ ∂
  … (8) 

This equation says that the total change in the (production) function of varying k and 

l simultaneously can be approximated by the sum of the estimates from the one-

variable-only changes. 

 

Following the example from above, what if capital increased by 10 units and labor 

increased by 2 units? Equation (8) tells us that we can estimate this increase by: 

100, 25 100, 25
. . (0.25 10) (1 2) 4.5 units

k l k l

Q QQ k l
k l= = = =

∂ ∂
∆ ∆ + ∆ = × + × =

∂ ∂
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What is the actual increase? We can compute this by using the production function 

as : 1/2 1/2(110,27) 110 27 54.4977 unitsQ = = , an increase of 4.4977 units, which is a 

very, very good approximation (compare 4.5 units to 4.4977 units). 

 

Note also that these linear approximations using one-variable and total differentials 

are not special properties of this Cobb-Douglas function, but are generally applicable 

to a wide range of functions of more than one variable. More generally, the total 

differential for a function of n variables, 1 2( , , , )nf x x x is given by a straightforward 

generalization of equation (8): 

1 1 1 1
1

( , , ) ( , , ) . .n n n n
n

f ff f x x x x f x x x x
x x

∂ ∂
∆ = + ∆ + ∆ − ∆ + + ∆

∂ ∂
     … (9) 

Curvature 

How do we extend the concepts of convexity and concavity to the multivariate case? 

Simply by using second order partial derivatives. Consider again the general 

definition of a multivariate function: 1 2( , , , )ny f x x x= . In this case, the shape of 

the function is an n-dimensional surface, and not a simple curve. We saw this earlier 

(in Example 7) with a function Hence, it makes sense to talk of convexity and 

concavity with respect to a single variable, treating all other variables as fixed. Let’s 

continue Example 7 here: 

 

Example 7 (extended): The function is 2 2( , )f x y x y= −  

Let us use the rules of differentiation and find all the partial derivatives of this 

function. 

First order partial derivatives: 2 ;  2x y
f ff x f y
x y

∂ ∂
= = = = −

∂ ∂
 

Second order partial derivatives: ( )

( )

2 2

2 2

2

2

2;  2

2 0

2 0

xx yy

xy

yx

f ff f
x y

f ff y
x y x y x

f ff x
y x y x y

∂ ∂
= = = = −

∂ ∂

 ∂ ∂∂ ∂
= = = − = ∂ ∂ ∂ ∂ ∂ 

∂ ∂∂ ∂ = = = = ∂ ∂ ∂ ∂ ∂ 
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All derivatives of the third order and higher are zero here, a result not surprising, as 

the function is of degree two (quadratic) in both x and y. 

 

Let us restrict our attention to this function in the range x ≥ 0, y ≥ 0, and note a few 

facts: 

a) Over this range of x and y, we can see that 2 0;  2 0x y
f ff x f y
x y

∂ ∂
= = ≥ = = − ≤

∂ ∂
. 

Using the sign of the first partial derivative, we can say that this function is 

(weakly) increasing in x, and (weakly) decreasing in y.  

b) Over this range of x and y, 
2 2

2 22 0;  2 0xx yy
f ff f

x y
∂ ∂

= = > = = − <
∂ ∂

. Using the signs 

of these second partial derivatives, we can say that this function is (strictly) 

convex in x, and (strictly) concave in y. 

 

Pictures will again tell the story better: 
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Above, we see a picture of the function itself. This is the same graph as was shown in 

Example 7, except now we have restricted the range to values of the function for x ≥ 

0, y ≥ 0 (a.ka. the first quadrant, in the language of mathematics). 

 

Let us fix the value of y at  y=3, and observe how the function varies with x alone. 

f(x,y)  as a function of x alone
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Clearly, this is an increasing and convex function in the variable x, as the signs of the 

partial derivatives calculated above revealed. 

Now, let us fix the value of x at x=3, and observe how the function varies with y 

alone. 

f(x,y)  as a function of y alone
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Clearly, this is a decreasing and concave function in the variable y, as the signs of the 

partial derivatives calculated above revealed. 

 

The moral of the story from the above pictures is that, when one talks about a 

function of more than one variable as being increasing, or concave, one needs to 

specify increasing in which variable, concave in which variable and so on.  

 

Note one final fact, before we leave this topic.  From the above calculations: 
2 2

0xy yx
f ff f

x y y x
∂ ∂

= = = =
∂ ∂ ∂ ∂

 

The cross-partials are both zero, which means that the slope of the function with 

respect to x does not depend on y, and vice versa. Aside from the fact that the values 

of the cross-partials are zero, the important thing is that they are equal. In other 

words, 
2 2

xy yx
f ff f

x y y x
∂ ∂

= = =
∂ ∂ ∂ ∂

  … (9) 

That is, it does not matter whether we differentiate by x first and then by y, or by y 

first, and then by x. We always get the same answer. This important (and seemingly 

obvious) fact is very important in calculus, and goes by the name of Young’s 

theorem. For instance, you should be able to verify that in Example 11, the cross-

partial derivatives of the Cobb-Douglas production function are both equal to: 
2 2

1/2 1/21
4

Q Q k l
k l l k

− −∂ ∂
= =

∂ ∂ ∂ ∂
 

 

 UNCONSTRAINED OPTIMIZATION 

Frequently, we wish to find the maximum and minimum values of a given function. 

Economists need such things since they routinely set up problems where they need 

to maximize profit or utility, or minimize cost in an endless variety of problems.  It 

turns out calculus is the principal tool we use to solve such problems. As always, 

there are neat geometrical interpretations for every thing we can and do say in the 

language of calculus.  
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Let’s start with a simple quadratic function, which will allow us to understand 

optimization in some detail. 

 

Example 12: 2( ) 12 100f x x x= − +  

A picture of this function has the following familiar shape. 

Maximum of a quadratic function
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Looking at the picture, it is clear that the maximum value of this function is achieved 

at x=6. Substituting the value of x=6 into the function, we have the value of y =f(x) at 

this point equal to y=136. This much is obvious to anyone who knows how to read a 

graph. At least two questions come up at this juncture: 

1) Do we have to draw a picture every time, or is there a more general method one 

can follow to identify the maximum of a function? 

2) What about the minimum of a function, as opposed to the maximum? 

 

Let us now proceed to answer both these questions. 
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A general methodology 

Note that our example function is increasing upto a point (x=6), and decreasing 

thereafter. This can be seen from the shape of the function itself. We can also use the 

first derivative of the function to verify this observation. According to our earlier 

understanding, this means that the first derivative, or slope of the function is positive 

up to x=6, and negative thereafter. We can apply the basic rules of differentiation to 

find the first derivative of this simple function: 
( )( ) 12 2df xf x x

dx
′ = = − . This is the 

equation of the slope of this function at every point x.  

 

For example, at x=-3, this function has a slope of 12-2(-3)=18. At x=12, the same 

equation yields a slope of 12-2(12)=-12. These slopes are shown in the above figure as 

tangents to the function at x=-3 and x=12 respectively. Now intuitively, one can sense 

that in going from a value of 18 to -12, the slope has to somewhere pass through a 

value of zero. Indeed, graphically, we can see that at the maximum of the function 

(i.e. when x=6), the slope is zero (the tangent is perfectly horizontal). Such points are 

the ones that will be the maxima or minima of a function. Since they are so 

important, they are given the name critical points or points of inflection of a 

function.  

 

Definition: A point x0 is said to be a critical point or a point of inflection of a function 

f(x), if the first derivative of the function evaluated at that point, 0( )f x′   is zero.  

 

In our example, setting the slope of the function to zero means solving the equation, 

0 0( ) 12 2 0f x x′ = − = , which yields 0 6x = as a critical point of the given function. 

This is the first piece of the optimization puzzle. But this is not the entire story. In 

this example, the critical point happens to be the point where the function attains its 

maximum value. But this is not true in general. There are two problems: 

Problem A: Without drawing a picture, it is not obvious if the critical point we 

identified is a maximum or a minimum. 

Problem B: There might be more than one critical point for a given function. 
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Problem A is illustrated with the following graph of another function: 

 

Example 13: 2( ) 12 100f x x x= − + +  

Minimum of a quadratic function
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The first derivative of this function is ( ) 12 2f x x′ = − + , which when set equal to zero, 

gives us x=6. By our earlier definition, this suffices to claim that x=6 is a critical point 

of the function. But looking at the graph, it is obvious that here, the critical point is a 

minimum of the given function.  

 

So, we now know that a necessary condition for a point to qualify as a minimum or a 

maximum of a function is that the first derivative of the function evaluated at that 

point should be zero. But we need to do more work in order to figure out if the 

critical point is a maximum or a minimum – it turns out that we need the sign of the 

second derivative.  

 

Remember that if a function has a positive second derivative, i.e. ( ) 0f x′′ > , it is a 

convex function (bowl shaped). This means that the critical point of such a function 

must be a minimum. Conversely, if ( ) 0f x′′ < , i.e. for a concave function that looks 

like an inverted bowl, the critical point must be a maximum. The function in 
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Example 12 has a second derivative equal to
2

2

( )( ) 2 0d f xf x
dx

′′ = = − < . Therefore, at 

x=6, we have a maximum for that function, as we identified from the graph. By the 

same logic, for the function in Example 13, the second derivative is 
2

2

( )( ) 2 0d f xf x
dx

′′ = = > . Therefore, at x=6, we have a minimum for that function, as 

can be seen from its graph.  

 

This discussion is usually summarized in math textbooks in the following fashion: 

For a given function f(x) to attain its maximum (minimum) value at a point x0, we 

need x0 to satisfy: 

i) First Order Condition (FOC): 
0

( ) 0
x x

f x
=

′ =  

ii) Second Order Condition (SOC):  

 
0 0

( ) 0 for a max; ( ) 0 for a min
x x x x

f x f x
= =

′′ ′′< >   … (10) 

 

Problem B is tricky to deal with. There can be (and there are) functions with more 

than one critical point. What then? Consider yet another example. 

 

Example 14: 4 3 2( ) 4 4 4f x x x x= − + +  

Let us try and find critical points of this function. We follow the usual procedure and 

set the first derivative of this function equal to zero. 
3 2( ) 4 12 8 0f x x x x′ = − + =  

To solve this equation, we note that the above equation can be factorized as follows, 

which helps us solve the equation for its three roots (since this is a cubic equation). 

( ) 4 ( 1)( 2) 0f x x x x′ = − − =  

The three solutions (roots) to this equation are x=0, x=1, x=2.  

 

Which (if any) are the minima, the maxima, and which are neither? At this point, a 

graph may be useful in seeing the big picture (pardon the pun!). 
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A Strange Function
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The figure confirms what we already know: that x=0, x=1, x=2 are the critical points 

of the above function. It also gives us a lot more information. x=0 and x=2 are both 

minima of the given function. What about the point x=1? And how can we tell 

without looking at the graph? 

 

It is necessary at this point to introduce the idea of a local optimum and a global 

optimum. A function has a local maximum (minimum) at 0x x= if it achieves its 

maximum (minimum) value in the neighborhood of all points x around 0x . The 

function has a global maximum (minimum) if it achieves its maximum (minimum) 

value over all points x at which it is defined. 

 

Strictly speaking, the FOC and SOC conditions we derived are conditions to obtain 

local maxima and minima. To see this, let’s evaluate the second derivative of this 

function: 2( ) 12 24 8f x x x′′ = − + at our three critical points, we have: (0) 8f ′′ = , 

(1) 4f ′′ = − , (2) 8f ′′ = . According to our earlier conditions, we confirm that we have 

local minima at x=0 and x=2, and a local maximum at x=1. Now, looking at the 

graph itself, it is obvious that x=0 and x=2 also yield global mimima, as the function 

is always of higher value than at these points. But x=1 is clearly a local maximum 
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point. At points x → ∞ , we can see that the function gets arbitrarily large, and so 

x=1 cannot be a global maximum point. 

 

So how do we find global maximum and minimum points using calculus? The short 

answer is: it’s not easy. At least in economics and finance, we get around this 

problem by employing functions that have desirable conditions such as: 

a) f has only one critical point in its domain 

b) 0 or 0f f′′ ′′> < for all values of x at which the function is defined 

In other words, we use only well-behaved functions where it is guaranteed that the 

FOC and SOC (that yield local optimum points) give us a global minimum or 

maximum. 

 

All the math we showed above for one variable can be extended very simply to the 

multivariate case. As it turns out, for the FOCs, we have to set all first order partial 

derivatives to zero, and for the SOCs, we have to examine the signs of all the second 

order partial derivatives including the cross-partials.  In the interest of brevity, I will 

not deal with the multivariate case here. 

 

 CONSTRAINED OPTIMIZATION 

 

All the optimization we dealt with in the previous section is called unconstrained as 

we tried to find the maximum or minimum of a function (this function is called the 

objective function), without any constraints. But in many economic problems, as in 

real life, we have several constraints under which we operate. An example will make 

this distinction clearer. 

 

Example 15: Consider the standard maximization problem of a consumer who gets 

utility (happiness) from consuming two goods: pizza (p) and beer (b). The consumer’s 

utility function is defined as: ( , ) 100. .U p b p b=  
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Notice that if there were no constraints, the consumer would like to consume as 

many pizzas and as much beer as he can to maximize his utility. In other words, the 

consumer’s utility increases arbitrarily as ;p b→ ∞ → ∞ . That means the consumer is 

never satisfied at any level of consumption (by the way, this is called non-satiation 

in economic jargon).  

 

On the other hand if you take the first derivative with respect to the variables p and 

b, and set them equal to zero (FOCs),  you will see that the critical points are of the 

form p=0 or b=0. We know that if p=0 or b=0, the consumer’s utility is zero, which 

means the FOCs yield us minimum points. So, the question of maximizing the 

consumer’s utility is vacuous in an unconstrained world. 

 

However, in the real world, our consumer is faced with constraints. And they make 

the utility maximization problem interesting. Let us say pizzas sell for $10 apiece 

and bottles of beer sell for $2 apiece. Further, assume our consumer has a total of 

$400 with him (where he got this money is not our concern here). So, somehow, he 

has to adjust his consumption of pizzas and beer such that he gets maximum 

happiness.  These facts can be written in the form of a budget constraint as follows: 

10. 2. 400p b+ = 6 

Now the utility maximization problem becomes more interesting. It is usual to write 

such a problem in the following form: 

,

 

 100. .

 subject to 10. 2. 400
p b

Max p b

p b+ =
 

This pithy formulation tells us everything we need to know about this problem. The 

variables under the Max are the variables over which we want to maximize the 

utility function, i.e. p and b are the decision variables in this problem. The utility 

function is called the objective function, and the problem is subject to a constraint 

(in this case, a budget constraint). 
                                                 
6 Strictly speaking, we should have written: 10. 2. 400p b+ ≤ to allow for the possibility that the 
consumer does not spend all his money. But in this simple world, we know that the consumer 
would like to spend all his money, and get more utility. In mathematical jargon, we know that 
the constraint is binding. 
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More generally, a maximization problem is written as: 

1 2
1 2, ,

 1 1 2

                             2 1 2

                                                  

1 2

 ( , , )

 subject to ( , , ) 0
( , , ) 0

                  ( , , ) 0

n
nx x x

n

n

m n

Max f x x x

g x x x
g x x x

g x x x

=
=

=

  … (11) 

Here f(.) is the objective function, and g1(.)…gm(.) are the m constraints 

 

So, how do we solve this problem? In this case, we have a very simple problem, so 

we can solve for b from the constraint as 200 5.b p= − , and plug this into the utility 

function to give us a function only of one variable, i.e. p. In this method, by 

eliminating b, we convert this constrained optimization problem into an 

unconstrained optimization problem. But we need a more general method, which 

will work for this case, as well as for more complex cases. This general method 

which we will study next is called the Lagrange Multiplier Method. I will present a 

cookbook-type recipe for this method, and present the intuition with some pictures. 

 

The Lagrange Multiplier Method  

Step 1: Form the so-called Lagrangian function, or simply Lagrangian: 

1 2 1 2 m 1 2 1 1 1 2

2 2 1 2 1 2

( , , , , , )= ( , , ) . ( , , )
                                             . ( , , ) . ( , , )

n n n

n m m n

x x x f x x x g x x x
g x x x g x x x

λ λ λ λ
λ λ

−
− −

L
  …(12) 

 For our utility maximization problem, we have only one constraint, so m=1. Hence, 

the Lagrangian is: 

( , , )= 100 .(10 2 400)p b pb p bλ λ− + −L  

 

Step 2: Find the critical points of the Lagrangian function. In other words, set all the 

first derivatives of the Lagrangian function to zero: 

1 1

=0 =0; =0 =0
n mx x λ λ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
L L L L

  … (13) 

 Note that this is a system of n+m equations we need to solve for the n+m unknowns 

1 2 1 2, , , , ,  and n mx x x λ λ λ . 
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 For our problem, we have two variables and one constraint. So we will have 3 

equations in 3 unknowns: 

* *

* *

* *

=0 100 10 0

=0 100 2 0

=0 10 2 400

b
p

p
b

p b

λ

λ

λ

∂
⇒ − =

∂
∂

⇒ − =
∂
∂

⇒ + =
∂

L

L

L
 

I have superscripted each unknown variable in the above system with an asterisk to 

indicate that these first order conditions must be satisfied at the optimum 

consumption levels of pizza, p* and beer b*.  

 

Step 3: Solve the n+m equations from Step 2. For our example, solving this system of 

three equations yields * * *20; 100; 1000p b λ= = =  

 

Now, we know that the constrained maximum of utility for our consumer is 

obtained when he chooses to consume 20 pizzas and 100 bottles of beer. It is useful 

to see all this graphically. Three-dimensional graphs are cumbersome, so we make 

use of two-dimensional graphs of the utility called indifference curves. Along the 

same indifference curve are combinations of pizzas and beer that give the same 

utility.  
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Notice that the higher utility corresponds to a northeastern migration of the 

indifference curve. Geometrically, we want to be on the most northeastern 

indifference curve, given our budget constraint. The highest utility achievable given 

our budget is the maximum value from our utility maximization exercise. This can 

be seen by superimposing our (linear) budget constraint on the above graph, as I 

have shown below. 

Indifference curves
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As you can see from the above, the budget constraint is exactly tangent to the 

maximum achievable utility indifference curve (with U=200,000), at the point where 

consumption is 20 pizzas and 100 beers, which is the maximum we obtained from 

the Lagrange Multiplier method! And the maximum utility obtained is given by the 

utility function: * * * *( , ) 100. . 100.20.100 200,000 unitsU p b p b= = = , as we can see 

from the graph above.  
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We need to clear up one tiny issue before leaving the topic of constrained 

optimization. What is the intuition behind the Lagrange multiplier λ? We made use 

of it as a mathematical device as part of the optimization recipe. Can we say 

something about its economic meaning? In particular, what does it mean to say that, 

at the optimum, * 1000λ = ?  

 

It turns out that the Lagrange multiplier in our problem has a neat interpretation as 

the marginal effect on the optimal utility of relaxing the budget constraint. In a general 

problem, the Lagrange multiplier measures the marginal change in the optimal value 

of the maximized function due to a small relaxation of the budget constraint. Let us 

see this in numbers. 

 

Suppose that instead of having $400 in his pocket our consumer had $401. This is 

tantamount to relaxing the budget constraint. (He is a bit less constrained than he 

was before because he has $1 more now). Redoing the optimization calculations (and 

you should do this yourself), we can see that the optimal values of beer and pizza 

are now: * *20.05; 100.25p b= = .  

 

Utility is now * *100. . 100.(20.05).(100.25) 201,001.25 unitsp b = = , an improvement 

of 1,001.25 units from before. This is the true marginal change in optimal utility due to 

relaxing the budget constraint by $1. Using the * 1000λ = number from before, we 

can approximate this as * *U .($1) 1000 unitsλ∆ = = , which compares very well to 

the actual marginal increase in utility of 1001.25 units.  

 

 UNCERTAINTY 

A large class of problems in economics and finance involves uncertainty. This is 

simply the Forrest Gump idea that “Life is like a box of chocolates. You never know 

what you are going to get next”. We use the concept of probability to denote the 

degree of uncertainty, as in “There is a 60% probability that it will rain tomorrow”. 
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Since probability theory is used extensively in financial economics, we study it here 

in a special section. 

 

Probability 

In our earlier language, probability can be looked at as a function that assigns to 

subsets of an event space a number between 0 and 1 called the probability of that 

subset’s occurrence, i.e. : [0,1]P Ω . If this sounds mystifying, let us look at a 

couple of simple examples. 

 

Example 16a: Consider tossing a fair coin. The event space consists of all possible 

outcomes of the experiment: here Ω={Head, Tail}. Now the probability function 

assigns to each element and subset of the event space, some number between 0 and 

1.  For instance, P{outcome=Head}=1/2; P{outcome=Tail}=1/2; P{outcome = Head or 

tail}=1, P{outcome=Head and Tail}=0. 

 

Example 16b: Consider now rolling a fair die. Now the event space is larger: 

Ω={1,2,3,4,5,6}. Again, the probability function assigns to each element and subset of 

the event space, some number between 0 and 1.   

Here, P{outcome=1}=1/6 …P{outcome=6}=1/6 

 

Random Variables 

In the die-rolling experiment above, before the die is rolled, the outcome is said to be 

random as the outcome is uncertain. Let’s use Y to denote the random outcome. 

Then, Y is said to be a random variable (hereafter, r.v.). Thus, by definition, the 

random variable could take on one of several values. The probability summarizes 

our beliefs regarding the different values the r.v. could take on. 

Discrete random variables: Density and distribution functions 

Let’s continue the example of the die-rolling experiment. Such a random variable 

which can take on only a discrete set of values (here 1, 2, 3, 4, 5 and 6) is called a 

discrete random variable.  
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If we plot the different values of the r.v. Y could take on the horizontal axis and the 

probability that the r.v. will take each value on the vertical axis, we obtain the 

following plot: 

Probability density function

0 1 2 3 4 5 6 7
y

P(
Y=

y)

1/6

 
 

The obvious thing this plot tells us is that the probability that Y could take the values 

1, 2, 3, 4, 5 or 6 is 1/6 each. Note two other things carefully: 

1) The probability of Y taking values such as y=1.5 or y=2.8 is zero. This is another 

way of saying that when you roll a die, 1.5 is not an option. 

2) When you add up the probabilities of Y taking on each possible value (i.e. 1 thru 

6), you get 1. So, it is as if in the above graph, we have taken a lump of 

probability of quantity 1, and distributed it among the 6 possible points.  

 

The above plot is a picture of the probability density function (pdf) of the random 

variable Y. In other words, for any r.v., the pdf informs us about the concentration or 

density of probability at various values that the r.v. can take. 

 

The distribution function, also known as the cumulative distribution function 

(cdf), of an r.v. is another handy device. It is defined as ( ) ( )YF y P Y y= ≤ . The cdf 

asks the question: given a point y, what is the probability that the r.v. Y takes on 
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values less than or equal to y? For our die-rolling example above, the distribution 

function looks like the following: 

Cumulative distribution function

0

1/6

1/3

1/2

2/3

5/6

1

0 1 2 3 4 5 6 7 8 9 10

y

F(
y)

=P
(Y

<=
y)

 
 

Note a few things about cdf s here:  

1) A lot of times we write ( ) ( )YF y P Y y= ≤ as simply ( )F y , assuming that it is 

known which r.v. we are talking about. 

2) ( )F y is an increasing function 

3) ( ) 0 as ;  ( ) 1 as F y y F y y→ → −∞ → → ∞  

4) ( ) ( ) ( ) ( ) ( )P a Y b P Y b P Y a F b F a< ≤ = ≤ − ≤ = − . For example, if we wanted to 

find the probability that our r.v. Y takes a value between 2 and 4 (not including 

2), we would find it as: 2 1 1 / 33 3(2 4) (4) (2)P Y F F − =< ≤ = − = . This makes 

sense: In our simple experiment, Y taking a value of between 2 and 4, not 

including 2, means the possibilities y=3 and y=4. Indeed the probability of these 

two values is 1 1 1 / 36 6+ = . 

 

There are many useful discrete r.v.s, and we shall study one more in the next 

example. 
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Example 17: A Bernoulli distributed r.v.  

A r.v. X is said to have the Bernoulli distribution with parameter π if: 

1) X can take only one of two values: 0 or 1 

2) P(X=1)= π; P(X=0)=1-π 

 

I have shown density and distribution function plots for a Bernoulli distributed r.v. 

with π =0.6 as shown below: 

 
 

Continuous random variables: Density and distribution functions 

Not all random variables are discrete. Many are continuous, i.e. can take on a 

continuum of real values. For instance, the temperature in this room a minute later 

could be viewed as a continuous r.v., as it could take values of 55.1 degrees, 55.15 

degrees … and so on. (We are limited only by our thermometers in measurement). 

 

Next, we generalize the concepts of pdf and cdf from the discrete to the continuous 

case, and note some differences with the discrete case. 

 

Example 18: A uniformly distributed r.v.  

Let us say the folks in the Freeman School make a good effort to keep the 

temperature in this room at 68°F. However, due to day-to-day conditions, let us say 

the temperature varies between 66°F and 70°F. Note that the temperature can be 

Bernoulli distributed r.v. : pdf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1

x

P(
X

=x
)

Bernoulli distibuted r.v. :cdf

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2

x

F(
x)

=P
(X

<=
x)



FINC 748 – Math Review – Fall 2003 

 41

considered as a continuous r.v., say T – a random variable, as we do not know exactly 

which value it will be tomorrow, and continuous because any value between 66°F and 

70°F is possible. This can be represented by the following probability density function: 

1/4,   66 70
( ) =

0        elsewhere
t

f t
≤ ≤




 

Here is a graph of the above function. 

Uniformly distributed r.v: PDF
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This is obviously a continuously distributed r.v., as the graph above indicates. It is 

defined only over the range [66,70].  Note a couple of things here: 

1) It does not make any sense to ask the question: What is the probability that the 

temperature will be exactly 68.5°F? Indeed, the probability of a continuous r.v. taking 

on any point value is zero. This is a significant difference between discrete and 

continuous r.v.s. In the discrete case, the probability of the r.v. taking on a point 

value may be non-zero. For instance, in the die-rolling experiment, the 

probability that the outcome is 3 is 1/6, while the probability that the outcome is 

3.25 is 0. 

2) With continuous r.v.s, we can only ask questions like: What is the probability 

that the temperature is less than or equal to 68.5°F? Or, what is the probability 

that the temperature is greater than 68.5°F? This probability is given by the area 
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under the graph in the specified range. For example, to determine the probability 

of t below 68.5, we need to consider the area below the graph, and to the left of 

the point 68.5. It is particularly easy to find the value in this simple case: this area 

is a rectangle, whose area is the length times width = (68.5-66)×0.25=0.625, or 

62.5%. Conversely, the probability that the temperature is greater than 68.5 is (70-

68.5)×0.25=0.375, or 37.5% 

3) Now, we know that the probability that t will be between 66 and 70 is 1, since 

this is the entire range of possible values for t. This means that the total area 

under the graph, between 66 and 70 has to add up to 1! Is this true? Sure enough, 

(70-66)×0.25=1.0, as we surmised. How did we achieve this? Because, the height 

of the rectangle was cleverly set at 0.25. 

4) In general, a uniformly distributed r.v. can be defined over any interval [a,b], in 

which case, we write the pdf as: 

1/( - ),  
( ) =

0        elsewhere
b a a t b

f t
≤ ≤




 

This ensures that the total probability under the graph is 
1 ( ) 1

( )
b a

b a
× − =

−
. 

What about the cdf of this uniform r.v.? Recall that the cdf is defined as 

( ) ( )YF y P Y y= ≤ , and is the answer to the question: given a point y, what is the 

probability that the r.v. Y takes on values less than or equal to y? We have just 

learned that the probability that a continuous random variable Y takes a value below 

a certain y can be found as the area under the probability density function graph to 

the left of the point y.  In the language of calculus, summation of areas under a graph 

is accomplished by the technique of integration (which is the opposite of 

differentiation, which we looked at before). Hence, you will see the following 

definition in a text book on probability. 

-

( ) = ( )
y

F Y y f y dy
∞

≤ ∫  … (14) 

This formula merely says that if we sum up all the area under the curve f(y) between 

-∞ and the point y, you will obtain the cumulative probability that the continuous 

r.v. will take a value below y. 
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For our temperature random variable T, we can find this probability for every point 

t, and plot this in the form of the following graph. 

 

Uniformly distributed r.v: CDF
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Note again that, as with discrete r.v.s: 

1) (.)F is an increasing function 

2) ( ) 0 as ;  ( ) 1 as F t t F t t→ → −∞ → → ∞  

3) ( ) ( ) ( ) ( ) ( )P a T b P T b P T a F b F a< ≤ = ≤ − ≤ = − . For example, if we wanted to 

find the probability that our r.v. T takes values below 68.5, we simply read it off 

this graph as 0.625, as shown in the above graph. 

 

Finally, note that the continuous uniform r.v. in Example 18 is the continuous 

counterpart to the discrete uniform r.v. of Example 16b (the die-rolling experiment). 

 

 Expectation and Variance 

 

Statisticians are frequently interested in finding the expectation and variance of a 

random variable. Let us study these two quantities in some detail. 
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Formally, the expectation or simply, mean or average of a random variable is 

defined as: ( ) . ( )E X x f x dx
∞

−∞

= ∫  for a continuous r.v.  … (15a) 

and  the corresponding definition: 

( ) . ( )
x

E X x P X x= =∑  for a discrete r.v.  … (15b) 

It is easiest to understand this quantity in the context of a simple discrete r.v. 

Example 19: A simple gamble 

Say you are faced with the following gamble. You flip a coin and if Heads shows up, 

you get $10, and if Tails shows up, you lose $10. This can be summarized very 

effectively by the following tree. 

 
The outcome of this gamble is a discrete random variable, say X, which takes values 

+10 and -10 with probability of ½ each. Now, the expectation of this random 

variable, using equation (15b) is:  

  
1 1( ) 10 10 $0
2 2

E X    = × + × − =   
   

 

In other words, the mean or average of this gamble (also known as the expected 

value) is simply the probability weighted average of all possible outcomes. What 

does it mean to say that the expected value of this gamble is zero? It means that if 

you play this game a (very large) number of times, you expect to have no money in 

your pocket at the very end. In one trial, you will either win or lose, but after a 

million trials, given that you are flipping a fair coin, you expect to win $10 in about 

half the trials and lose $10 about half the time, leaving you with nothing at the end of 

it all. 

P(Tails)=1/2 

P(Heads)=1/2 

Flip coin 

+10 

-10 

Gamble 1: 
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Now, consider another similar gamble: 

 
Let us denote the outcome of this gamble by a random variable Y. One can verify 

easily that the expected value of this gamble is also zero. In other words, E(Y)=0 

 

Suppose you are a player at a casino offering these two gambles. You ask a simple 

question. Which of these two gambles is more risky? Well, the expected value of the 

two gambles is identical. Does that mean each are equally risky? Clearly not! 

Intuitively speaking, we sense that Gamble 2 is somehow riskier than Gamble 1, as 

you gain or lose a lot more in the former as compared to the latter. At this point, it 

may help to look at the pdf s of the r.v.s associated with both these gambles. 

 

Gambles X and Y: PDF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110

Outcome 

Pr
ob

ab
ili

ty

 
The dark lines are for Gamble 1 (r.v. X), and dashed lines are for Gamble 2 (r.v. Y) 

P(Tails)=1/2 

P(Heads)=1/2 

Flip coin 

+100 

-100 

Gamble 2: 
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One can see that our intuitive feeling about the risk of these gambles, the notion of 

gaining or losing a lot more than in the other gamble is represented as Gamble 2’s 

pdf being much more “spread out “ about the average (zero, in this case). We need a 

quantity that will tell us how “spread out” the pdf of a given r.v. is about its average 

value. It turns out this quantity is the variance of a random variable. 

 

Formally, the variance of a random variable is defined as:  

[ ]2( ) ( ) . ( )Var X x E X f x dx
∞

−∞

= −∫  for a continuous r.v.  … (16a) 

and  the corresponding definition: 

[ ]2( ) ( ) . ( )
x

Var X x E X P X x= − =∑  for a discrete r.v.  … (16b) 

Let us apply this definition to both our gambles: 

For Gamble 1, denoted by random variable X: 

E(X)=0 

2 21 1( ) (10 0) ( 10 0) 100
2 2

Var X    = − + − − =      
squared dollars 

For Gamble 2, denoted by random variable Y: 

E(Y)=0 

2 21 1( ) (100 0) ( 100 0) 10,000
2 2

Var Y    = − + − − =      
squared dollars 

By this measure, Gamble 2 is 100 times riskier than Gamble 1, which squares with 

our intuition. One can immediately see the use of this quantity in finance and 

economics. Variance gives us a way of comparing the risk of different investments. When 

people say stocks are riskier than bonds, they usually mean that the variance of stock 

returns is likely to be higher than the variance of bond returns. In other words, stock 

returns are more volatile than bond returns. 

 

The only problem with variance is its units. Since we squared the deviations from 

the average during the variance calculation, we come up with a quantity measured 

in squared dollars. Clearly, squared dollars are cumbersome to work with and we 
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need a workaround. Why not take the square root of the variance?  Doing this gives 

us a quantity called the standard deviation. 

 

Formally, the standard deviation of a random variable, discrete or continuous, is 

defined as:  

Standard Deviation( )X Variance=  … (17) 

For our example gambles: 

Gamble 1: Standard deviation(X)= 100 $10=  

Gamble 2: Standard deviation(Y)= 10,000 $100=  

 

Even though we have worked through only the simplest of examples, the 

expectation, variance and standard deviation of more complex discrete r.v.s, and 

indeed, continuous r.v.s can be found using formulas (15), (16) and (17) quite easily. 

The interpretation of expected value as the average, and variance and standard 

deviation as the volatility of a random variable is true for any r.v. in general. 

 

We are now ready to get introduced to a very important distribution: The Normal 

Distribution, or the so-called Bell curve. This is far and away the most important 

distribution in probability and statistics, so read the next section well.  

 

 THE NORMAL DISTRIBUTION 

A (continuous) random variable X is said to be normally distributed with parameters 

µ and σ if it has the following pdf: 
2

2
( )

2
2

1( ) , ( , )
2

x

f x e x
µ

σ

πσ

−
−

= ∈ −∞ +∞   … (18) 

Do not let this complicated formula intimidate you; rest assured we will almost never 

manipulate such complicated functions.  

The corresponding cdf is obviously given by  
2

2
( )

2
2

- -

1( ) = ( )
2

tx x

F X x f x dx e dt
µ

σ

πσ

−
−

∞ ∞

≤ =∫ ∫   … (19) 
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Mathematicians have known at least for a couple of hundred years now that the 

integral in (19) has no closed-form solution, which means we cannot actually express 

it in the form of a function of x, µ and σ. But this does not mean it is useless. We can 

evaluate it at any point numerically. Tables of cumulative probability for different 

points x under the Normal distribution are usually found in the back of any statistics 

text book. 

 

What are the parameters µ and σ? It turns out that µ is the expected value or average or 

mean of this r.v., and σ is the standard deviation or square root of the variance of this 

r.v. 

 

Often, we will find it much more convenient to work with a special normal 

distributed r.v. with zero mean, and unit variance, i.e. with µ = 0 and σ = 1. Such an 

r.v. is said to be distributed according to a Standard Normal Distribution.  

 

Formally, a standard normal r.v. Z has the following pdf: 
2

21( ) , ( , )
2

z

z e zφ
π

−
= ∈ −∞ +∞  … (20) 

and its cdf is given by: 
2

2

- -

1( ) = ( )
2

z z t

Z z z dz e dtφ
π

−

∞ ∞

Φ ≤ =∫ ∫  … (21) 

The function ( )Z zΦ ≤ is sometimes written as ( )zΦ or N(z), and plays an especially 

important role. The Black-Scholes formula for option pricing, you will  remember, 

contains a couple of terms involving this function. 

 

The next page shows graphs of the pdf and cdf of the standard normal distribution, 

i.e. equations (20) and (21) above, on the same plot. As expected, the pdf is the 

familiar bell-shaped curve, while the cdf goes smoothly from 0 to 1 as we traverse 

values from -∞ though +∞.  
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The Standard Normal Distribution
PDF and CDF
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 BASIC FINANCE MATH 

 

Let’s switch gears a bit and explore the mathematics of finance, using the basic math 

we learned in earlier sections. 

 

Compound Interest 

All financial calculations involve the time value of money. The basic idea of interest is 

very simple, and quite familiar.  If you start with $100 in your bank account that 

pays 5% a year, and do not withdraw any amount during the year, then at the end of 

one year, you will have your original  $100, called the principal amount, plus 

interest of 0.05× $100 = $5, i.e. you will have a total of $105. If you do not withdraw 

any money in the second year, you will have at the end of the second year, an 

amount equal to $105 + $105 ×0.05= $110.25. In the second year, you earned interest 

of $110.25-$105=$5.25. Why $5.25 and not $5.00 as in the first year? The interest rate 

is still the same (5%), but you earned interest on a starting amount of $105, not $100.   
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To summarize, in our simple example, if we denote principal as P and the yearly rate 

of interest as r, at the end of t years, you will have a future value of :  

  

(1 )tFV P r= +  …  (22) 

This is the most basic formula in finance, and is called the compounding formula.  

 

Compounding at various intervals 

In the above example, we assumed that your bank pays interest only once every 

year. Now, your bank might decide (as most banks do) to calculate and pay you 

interest every quarter. In the jargon of finance, you now have an account on which 

interest is compounded every quarter. The compounding interval is 3 months, and 

the compounding frequency is 4 times per year. What do we do now? Note that the 

annual interest rate (a.k.a. the annual percentage rate or APR) is still the same: 5%. 

Now, over the first year your money will grow four times as shown in the table 

below. 

Period Annual Periodic  Begin Interest End 
(quarter) rate rate Amount   Amount 

1 5% 1.25% 100.00 1.25 101.25 
2 5% 1.25% 101.25 1.27 102.52 
3 5% 1.25% 102.52 1.28 103.80 
4 5% 1.25% 103.80 1.30 105.09 

 

Notice that you end up with $105.09, slightly more than the $105 you would if the 

money were compounded annually. This makes sense: As money is compounded more 

frequently, you earn more interest, which leads to a greater future value.  

 

What about our formula? Obviously, we need to modify it to account for more 

frequent compounding. Let us introduce one more variable, m to represent the 

number of compounding periods per year. Then, formula (22) becomes: 

 
.

1
t mrFV P

m
 = + 
 

 …  (23) 
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Let us see what we will have at the end of two years, with quarterly compounding. 

Plug in P=$100, r=0.05 per year, t=2 years, m=4. Formula (23) gives us the answer: 

$110.45, which we naturally expect to be greater than the $110.25 under annual 

compounding.  

 

Continuous compounding  

One can imagine dividing the year into smaller and smaller periods, thereby 

compounding monthly, weekly, daily, hourly, or even every minute and second. As 

we divide the year into smaller and smaller intervals, m grows larger and larger. For 

example, daily compounding implies m=360, compounding every minute implies 

m=360×24×60=518400. In the limit, we could imagine compounding every instant, as 

m grows to a very, very big number. This is the idea of continuous compounding. 

To determine the effect of continuous compounding on formula (23), we need to 

quantify what we mean by “m grows to a very, very big number”. Mathematically, 

this is accomplished by finding the limit of the expression in (23) as “m goes to 

infinity”, and is represented as:  

  
.

 (continuous compounding) 1
t m

m

rFV lim P
m→∞

  = +  
  

 

How do we evaluate this? A bit of basic calculus comes to our rescue. We know that 

as m grows large, the following is true: 

 1
m

r

m

rlim e
m→∞

 + = 
 

, where e=2.71828…, the base of the natural logarithm 

 

This means our expression in (23) becomes: 

.

1 1
tt m m

m m

r rFV lim P P lim
m m→∞ →∞

      = + = +      
      

, which means 

 

   (continuous compounding) rtFV Pe=  …  (24) 
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How good is this approximation? In the table below, I have used our example 

numbers: P=$100, r=5% per year, t=2 years. I have shown future values after 5, 10, 

25, and 50 years, with m=1, 2, 360 and ∞. 

 

 

 

 

 

 

You can see that beyond m=360 is quite close to continuous compounding. (Credit 

cards compound daily the interest on your balances. Beware!). 

 

 THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

As can be imagined from the discussion in the previous section, the exponential and 

logarithmic functions are used extensively in finance. Hence, it behooves us to 

understand these well. This section will also serve to collect all necessary properties 

of these functions. 

 

Exponential function 

Example 6a introduced us to the shape of the exponential function defined as: 
xy e= , which looks like the following: 

The exponential function
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Years m=1 m=2 m=360 m→∞ 
0 100.0000 100.0000 100.0000 100.0000 
5 127.6282 128.0085 128.4003 128.4025 

10 162.8895 163.8616 164.8664 164.8721 
25 338.6355 343.7109 349.0040 349.0343 
50 1146.7400 1181.3716 1218.0379 1218.2494 
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The exponential function has the following five basic properties, which we will use 

at various times: 

E.1: .r s r se e e +=  

E.2: 
1r
re

e
− =  

E.3: 
r

r s
s

e e
e

−=  

E.4: ( )r s rse e= , and 

E.5: 0 1e =  

These are all algebraic properties of exponents that work for any number, not just e. 

For example, they also work for 10.  

2 3 510 .10 10= ; 2
2

110
10

− = ; 
2

2 3
3

10 10
10

−= ; 2 3 6(10 ) 10= ; 010 1=  

Logarithm function 

Let’s start with logarithms to the base 10 (since we are used to counting in tens). 

 

Definition: The logarithm of any number x to the base 10 is defined as the power to which one 

must raise 10 to yield x.  

 

For example, take 100. We are looking for the number y such that 10 100y = . 

Obviously, y=2 satisfies this equation. So we say: the logarithm of 100 to the base 10 

is 2. Similarly the logarithm of 1000 to the base 10 is 3.  

 

Let’s now deal with a couple of special cases:  

x=1: We are looking for a number y such that 10 1y = . Obviously, y=0.  

x=0: We are looking for a number y such that 10 0y = . This is not so easy. One can 

see however, that as y becomes a really really large negative number, say -1,000,000, 

the value of 1,000,000
1,000,000

110 0
10

− = → (Note that we have made use of property E.2. 

from above). So it makes sense to define the logarithm of 0 to any base as -∞. 



FINC 748 – Math Review – Fall 2003 

 54

 

To understand the use of logarithms, consider the well-known Richter scale7 used 

for measuring the magnitude of earthquakes. Although the scale has no upper 

bound, it is typical to measure an earthquake on the scale by assigning a number 

between 1 and 9. The Richter scale is logarithmic (with base 10), which means the 

seismic waves of a magnitude 6 earthquake are ten times greater than those of a 

magnitude 5 earthquake. 

 

Similar to base 10 logarithms, we can take logarithms to the base e. Conceptually, 

this is identical to base 10 logarithms, except that we use e in the place of 10, i.e. the 

logarithm of any number x to the base e is defined as the power to which one must raise e to 

yield x, and is written as y=ln(x)8. This means that if we can write ye x= , then y is said 

to be the logarithm of x to the base e. 

 

Notice that the logarithm function is the inverse function of the exponential function. That 

is, if we raise e to the y th power, we obtain x. If we take the logarithm of x to the 

base e, we can get back to y. Corresponding to properties E.1. through E.5 of the 

exponential function, we have five properties of the natural logarithm function. 

 

L.1: ln( . ) ln( ) ln( )r s r s= +  

L.2: ln(1/ ) ln( )s s= −  

L.3.: ln( / ) ln( ) ln( )r s r s= −  

L.4: ln( ) .ln( )sr s r=  

L.5: ln(1) 0=  

To understand logarithms better, it is worthwhile for you to prove properties L.1 

through L.5. using properties E.1 through E.5. 

                                                 
7 So named after Charles F. Richter (1900-1985), renowned American geophysicist and 
seismologist, who devised the scale. 
8 ln(x) is read as natural logarithm of x or logarithm of x to the base e, while log(x) usually stands for 
logarithm of x to the base 10. 
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We shall understand the advantages of using logarithms in finance in the next 

section. 

 MEASURING RETURN 

Consider any financial asset, say a share of stock. We are frequently interested in 

measuring the return on this asset. If the price of an asset is P0 at time t=0, and P1 at 

time t=1, the familiar definition of return during this period (between t=0 and t=1) is: 

1 0 1
1

0 0

1P P PR
P P
−

= = −  … (25) 

In general, between any time t-1 and t, this return can be written as: 

1

1 1

1t t t
t

t t

P P PR
P P

−

− −

−
= = −  … (26) 

This is known as the simple net return between t-1 and t. 

The simple gross return is defined as 1+Rt. 

 

Similarly, the return over the most recent k periods (a multiperiod return) can be 

written as: 

1 1

1 1

1 2

1 ( ) (1 ).(1 ). (1 )

               = . . .

t t t t k

t t t k t

t t t k t k

R k R R R
P P P P

P P P P

− − +

− − +

− − − −

+ = + + +

=
 … (27) 

Finally, the annualized return over the most recent k periods is written as: 
1/

1/
1 1

Annualized ( ) (1 ( )) 1
                               = [(1 ).(1 ). (1 )] 1

k
t t

k
t t t k

R k R k
R R R− − +

= + −

+ + + −
 … (28) 

 

As we discussed a couple of sections ago, the continuously compounded rate of 

return between time t-1 and t is given by rt, where rt satisfies: 

1. tr
t tP P e−=   … (29) 

Using our knowledge of logarithms, we see that we can solve for rt as: 

1

ln ln(1 )t
t t

t

Pr R
P −

 
= = + 

 
  … (30) 
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What about multiperiod returns? The continuously compounded return over the 

most recent k periods is given by: 

1 1

1 1

1 1

( ) ln[1 ( )] ln[(1 ).(1 ). (1 )]
                                = ln(1 ) ln(1 ) ln(1 )
                                = 

t t t t t k

t t t k

t t t k

r k R k R R R
R R R

r r r

− − +

− − +

− − +

= + = + + +
+ + + + + +

+ + +
 … (31) 

Finally, the annualized continuously compounded return over the k-periods can be 

obtained as the simple average of the compounded returns for each period. 

 

Continuously compounded annualized return is:  

1/ 1 1 ln[1 ( )] =k t t t k
t

r r rR k
k

− − ++ + +
+  … (32) 

 

Equations (31) and (32) show the convenience of continuously compounded returns: 

The continuously compounded return over any number of periods is simply the sum 

of the continuously compounded returns for each period. A multiplicative formula is 

converted to a convenient additive formula!  As an additional advantage, it turns out that 

at a more advanced level of finance, additive processes are much easier to deal with 

compared to multiplicative processes. 

 

Another advantage of continuously compounded returns can be explained by the 

following example: 

 

Example 209: On March 4, 1999, the NASDAQ composite index closed at 2292.89. On 

March 10, 2000, the index closed at 5048.62. On January 2, 2001, the index closed at 

2291.86, essentially at the same level as in March 1999.  

The simple net return between March 1999 and March 2000 can be calculated using 

the formula above to be: 
5048.62 1 120.19%
2292.89

− = , and the simple net return between 

March 2000 and January 2001 is: 
2291.86 1 54.60%
5048.62

− = −  

 
                                                 
9 This example is from “Derivatives Markets” by Robert L. MacDonald, Addison Wesley, 2003 
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The thing to note here is that even though the index went up and came back down to 

the same level, the increase and decrease are not symmetric. 

 

Observe the contrast with continuously compounded returns below:  

The continuously compounded return between March 1999 and March 2000 is given 

by: 
5048.62ln 78.93%
2292.89

  = 
 

 and that between March 2000 and January 2001 is given 

by: 
2291.86ln 78.97%
5048.62

  = − 
 

. Now, the increase and decrease is symmetric. 

 

Finally, note one other important difference. Simple returns can never be less than 

100%, while continuously compounded returns can be less than 100%. 

To see this, consider the return calculations if the index level as of January 2001 were 

100 (an extreme case to make our point) instead of 2291.86. 

 

The simple return between March 2000 and January 2001 is: 
100 1 98.02%

5048.62
− = −  

The continuously compounded return is: 
100ln 392.17%

5048.62
  = − 
 

 

 

This concludes the math (p)review for this course. I have deliberately covered more 

mathematical ground than is necessary, just to be sure you can use this note for more 

courses than one. Hopefully, you will find it helpful to use this note as a handy 

reference. 

 

 

 

 

 

 

 

 


