Pricing Options: The Binomial Way

FINC 456

Pricing Options:
 The important slide

- Pricing options really boils down to three key concepts...
* Two portfolios that have the same payoff cost the same.
\checkmark Why?
* A perfectly hedged portfolio earns the risk-free rate, because its payoff is the same regardless of the underlying asset's value
* We can always form a perfectly hedged portfolio using the option and the underlying.
\checkmark Why?

Pricing Options: A simple example

- Consider a stock that is trading at $\$ 100$ today, and will either be $\$ 110$ or $\$ 90$ in 3 months.
- What's the price of a call option with a strike price of $\$ 100$, maturing in 3 months?
* The risk-free rate is 8%
- The value of the option in 3 months is $\$ 10$ or $\$ 0$.
- Suppose I sell an option and buy .5 shares of stock...
* If the stock goes up, I have $\$ 110(.5)$ - $\$ 10=\$ 45$
* If the stock goes down, I have $\$ 90(.5)=\$ 45$
- The portfolio must be worth $\$ 45 \mathrm{e}^{-08(.25)}=\$ 44.11$
- So the option value today is: (.5) $\$ 100-\mathrm{c}=\$ 44.11$
- The call price is $\$ 5.89$ today...

A closer look at the simple example: or, where'd that .5 come from...

- Usually, the example I just used is depicted graphically, by using a "tree"
$*$ Since there are only two outcomes, it is a binomial tree...

* And I'm looking for the number of shares that I buy in order to "completely hedge" the call I sell
\checkmark What do I mean completely hedge?

Some notation...and that .5 answer

- Be clear on the notation:
* S: the stock price today
$*$ u: the \% move up in the stock
$*$ d: the \% move down in the stock
$* \mathrm{c}_{\mathrm{u}}$ and c_{d} : call option price if the stock is up or down
* Δ : number of shares to buy to hedge portfolio
- So if we need the portfolio to be worth the same whether the stock goes up or down...

$$
\Delta S u-c_{u}=\Delta S d-c_{d} \Rightarrow \Delta=\frac{c_{u}-c_{d}}{S u-S d}
$$

- Or in our example, $\Delta 110-10=\Delta 90 \Rightarrow \Delta=\frac{10}{20}=.5$

No stopping us now...

- This principle can be easily extended to more and more complex situations.
\div How about a 6 month option?

* What is c_{u} ? Well Δ is .9545 , so

$$
\Delta S u-c_{u}=e^{-.08(.25)} 94.5 \Rightarrow c_{u}=12.37
$$

* How about c_{d} ?

And thus, for two periods...

- So then the option price today is:

- The Δ now is $\Delta=\frac{12.37}{20}=.6183$
- And thus $.6183(100)-c_{u}=e^{-.08(.25)} 55.648 \Rightarrow c_{u}=7.28$
- There has to be an easier way...

The binomial model: The elegant (and easy) way

- Let's go back to the equations...
* We know the present value of the hedged portfolio
\checkmark That's (pick the "up" state) $\left[S u \Delta-c_{u}\right] e^{-r T}$
\checkmark How else can we interpret this?
* We know the value of the portfolio today...

$$
\checkmark \text { That's } \Delta S-c_{u}
$$

- So therefore $\left[S u \Delta-c_{u}\right] e^{-r T}=\Delta S-c_{u}$
- And since we know an equation for Δ, we can substitute like mad...
$c=e^{-r T}\left[q c_{u}+(1-q) c_{d}\right]$ where $q=\frac{e^{r T}-d}{u-d}$

The genius of risk-neutrality

- Consider the equation that we just derived...
$c=e^{-r T}\left[q c_{u}+(1-q) c_{d}\right]$ where $q=\frac{e^{r T}-d}{u-d}$
- First, let's see if it works...q $=.6010 ; e^{-r T}=.9802$
* We still get $\$ 7.28$ for the option, and it's lots faster...
- But what is q really?
* Kind of looks like a probability...
* In fact, it's the probability that makes the underlying grow at the risk-free rate.
\checkmark We can assume this because we can always form a hedged portfolio of the derivative and its underlying security...

Risk neutrality, con't

- What is the expected return on the stock with the "probability" q ?
\checkmark Note: what I'm calling q, Hull calls p
$\not *$
- In general, we can always use the assumption that individuals are risk-neutral and only demand the risk-free rate because they "could" hedge, and the risk-free rate is the best that they should earn...
* Occasionally have to be careful, because what could destroy the ability to hedge?
\checkmark Transactions costs, taxes, "lumpy" assets, etc...

Let's recap, with a put...

- Whether it's a put or a call, makes no difference
* Really, all that changes is the payoff...
\checkmark Which means we could price lot's of different stuff!
* What about a put option struck at 100 ?
* Well, q is still . 6010 and the PV factor is .9802...

How else could we have done it?

- Well, recall that
$c-p=S-X e^{-r T} \Rightarrow p=7.28-100+96.09=3.37$
- But that's only for European options...what if the put was American?

Back to the Delta

- Remember the delta of the option is the position in the underlying that created the riskless hedge...
* This changes as the underlying price moves...
* To hedge the option, one needs to trade continuously (and costlessly) in the underlying!
- Delta also has the interpretation as the change in the option price for a change in the underlying price.
- Hedging the risk of changes in the underlying price is called rebalancing, or delta hedging.
* There needs to be borrowing and lending freely at the risk-free rate
$*$ If this is possible, we can replicate the payoff of the option by trading in the underlying and borrowing and lending

- Where's the volatility? How accurate can this be?
$*$ The volatility is in the u and $d \ldots$ if the underlying can move a lot over a period, there's more volatility.
* A given period is called a time step...
* The idea is that greater accuracy is obtained by observing (and calculating) prices over smaller and smaller intervals
- If the time period is $h=\frac{T}{n}$ where $n=$ number of steps
- Then we can use q, u, and ${ }^{n}$ d to construct a tree...

$$
\begin{aligned}
& u=e^{\sigma \sqrt{h}} \text { and } d=e^{-\sigma \sqrt{h}} \\
& q=\frac{e^{r h}-d}{u-d}
\end{aligned}
$$

Binomial Option Convergence

* Consider a call option with 6 -month maturity, at the money (with the asset at $\$ 100$), with volatility of .19 and a risk-free rate of 8%.

