1 Esempio di belief non coerenti

Consideriamo il seguente esempio di belief. Nella tabella che segue sono rappresentati p^{I}, p^{II} . Per la precisione, nella parte sinistra delle caselle si leggono (per riga) i belief dei tipi del giocatore I rispetto ai tipi del giocatore II; viceversa, nella parte destra delle caselle si leggono (per colonna) i belief dei tipi del giocatore II rispetto ai tipi del giocatore I.

	II.1	II.2	II.3
I.1	1/3:1/4	2/3:3/4	0:1/2
I.2	1/3:3/4	1/3:1/4	1/3:1/2

Questi belief corrispondono al caso coerente? Cioè se si possono trovare 6 numeri che mi permettono di ricostruire (attraverso probabilità condizionata) la tabella precedente?

	II.1	II.2	II.3
I.1	p_{11}	p_{12}	p_{13}
I.2	p_{21}	p_{22}	p_{23}

Vediamo se sono belief coerenti

Per esserlo deve essere (supponendo che tutte le quantità al denominatore siano strettamente positive; se una di queste si annulla, la corrispondente equazione non ci interessa più (per fortuna), in quanto non abbiamo alcun vincolo sulla probabilità condizionata; la trattazione di questi dettagli viene fatta in fondo.

$$\frac{p_{11}}{p_{11}+p_{12}+p_{13}} = 1/3 \quad \frac{p_{12}}{p_{11}+p_{12}+p_{13}} = 2/3 \quad \frac{p_{13}}{p_{11}+p_{12}+p_{13}} = 0$$

$$\frac{p_{21}}{p_{21}+p_{22}+p_{23}} = 1/3 \quad \frac{p_{22}}{p_{21}+p_{22}+p_{23}} = 1/3 \quad \frac{p_{23}}{p_{21}+p_{22}+p_{23}} = 1/3$$

$$\frac{p_{11}}{p_{11}+p_{21}} = 1/4 \quad \frac{p_{21}}{p_{11}+p_{21}} = 3/4$$

$$\frac{p_{12}}{p_{12}+p_{22}} = 3/4 \quad \frac{p_{22}}{p_{12}+p_{22}} = 1/4$$

$$\frac{p_{13}}{p_{13}+p_{23}} = 1/2 \quad \frac{p_{23}}{p_{13}+p_{23}} = 1/2$$

Notiamo subito che da $\frac{p_{13}}{p_{11}+p_{12}+p_{13}}=0$ otteniamo $p_{13}=0$.

Ma questo è incompatibile con $\frac{p_{13}}{p_{13}+p_{23}}=1/2$.

Quindi questo non è un caso di belief coerenti.

Vediamo i casi "degeneri" lasciati in sospeso.

Se $p_{11} + p_{12} + p_{13} = 0$, ne segue immediatamente che $p_{11} = p_{12} = p_{13} = 0$ (visto che si tratta di quantità maggiori o uguali a zero). Segue anche che $p_{21} + p_{22} + p_{23} = 1$. Dalla seconda riga della matrice data, si ricava (usando la definizione di probabilità condizionata) che deve essere $p_{21} = p_{22} = p_{23} = 1/3$. Abbiamo ricavato, in particolare, che $p_{11} = 0$ e che $p_{21} = 1/3$. Ma allora da questo ricaveremmo che i belief di II.1 sarebbero che I è del tipo 1 con probabilità 1 e del tipo 2 con probabilità 0. Il che non corrisponde ai dati.

L'altro caso "degenere" si tratta in modo assolutamente analogo. Ecco i dettagli per pigri e diffidenti.

Se $p_{21} + p_{22} + p_{23} = 0$, si ha che $p_{21} = p_{22} = p_{23} = 0$. Segue anche che $p_{11} + p_{12} + p_{13} = 1$. Dalla prima riga della matrice data, si deduce che $p_{11} = 1/3$, $p_{12} = 2/3$ e $p_{13} = 0$.

Abbiamo quindi che $p_{11} = 1/3$ e $p_{21} = 0$. Anche in questo caso ricaveremmo che i belief di II.1 sarebbero che I è del tipo 1 con probabilità 1 e del tipo 2 con probabilità 0. Il che non corrisponde ai dati.