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1 Agreeing to disagree

Aumann, in ’81, qualifies correlated equilibria as expression of bayesian ra-
tionality.
To understand and discuss the content of Aumann’s assertion, we need some
further technical tools. In particular, we need a richer language.

I will begin with an example:
You are a D.M.

What you get depends on :

{
a ∈ A ← your action
ω ∈ Ω ← true state of nature

Typical problem of decision under incertanty.
You must choose a before knowing ω
Consider an example. You are offered to bet on the result of a throw of
couple of dice (for what will follow, I assume that one is red and the other is
blue).
You will gain G if the sum of dice is 8, and you will pay L otherwise.
Here a reasonable (not the unique which is possible or reasonable) represen-
tation of Ω is Ω = {1, . . . , 6}2.

BLUE DIE

•
•
•
•
•

RED DIE

With p(i, j) = 1
36
∀(i, j) ∈ Ω

Assume that you are simply an expected money maximizer. Your vN-M util-
ity function is (linear with) money.

TO BET: 5
36

G− 31
36

L
NOT TO BET: 0

So, you will bet if 5
36

G ≥ 31L. . .
Notice that your choice is NOT CONDITIONED upon ω. Obviously. You
don’t know ω. We are obeying to some minimal realism assumption.
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Would be different if you knew ω. Of course, if ω ∈ {(2, 6), (3, 5), . . . , (6, 2)}
then you would “bet”, getting G. Otherwise you would not bet, getting 0.
Not serious.
But there are interesting “intermediate” cases.
For example, you could be allowed to see the result of ONE die just before
betting. More precisely, let’s assume that you can see the result of the red
die.
This means that you have partial information. This fact can be represented
by means of an information partition
P = {{(1, 2), . . . , (1, 6)}, {(2, 1), . . . , (2, 6)}, . . . , {(6, 1), . . . , (6, 6)}} = {P1, . . . , P6}.
This (info partition) is a standard tool.
The interpretation is obvious. If ω is the true state of nature, the DM knows
only P (ω), the element of the partition to which ω belongs.
So, the action of DM can be contingent on P (ω).
Of course, to decide, the DM will re-compute the probably distribution based
on his partial information.
6 cases:
ω = (1, j), i.e. we are in P1.
The probability that the sum is 8 is zero. so:
TO BET: −L
NOT TO BET: 0.
ω = (k, j); i.e. we are in Pk, k = 2, . . . , 6, the probability that the sum is 8
is 1

6
. So:

TO BET: 1
6
G− 5

6
L

NOT TO BET: 0.
All of this with just one DM.
If the DMs are two (or more)? Clearly, the key issue here is that they may
have different (partial) information.
For example, DM2 could know the result of the “second” die, the blue one.
So, he has a different information partition. To avoid confusion, we shall
call P1 the information partition of DM1 and P2 the information partition
of DM2.
P2 = {{(1, 1), . . . , (6, 1)}, {(1, 2), . . . , (6, 2)}, . . . , {(1, 6), . . . , (6, 6)}}
For example, if the true ω is (1, 3), w.r.t. to the bet:
1 assigns prob = 0 to the event E that the sum of dice is 8.
2 assigns prob = 1

6
to the same event E.

So, if we have that 1
6
G− 5

6
L > 0, DM2 will bet, while 1 not.

Nothing strange. . .

Notice the following.
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If 2 knows that 1 assigns prob = 0 to the event E, than 2 will further revise
his probability assessments!
NOTICE that for this to happen, it is essential that player 2 KNOWS P2,
the info partition of 1 (or that, at least, has some info about that).
So, the fact that 1 and 2 have different beliefs about E, cannot be a shared,
a common information.
This is the key point of Aumann’s “agreeing to disagree”.

Please, notice that this was just a simple example. In particular, it was
enough for player 2 to know the probability assigned by 1. One can construct
more sophisticated examples, with more elaborate knowledge interactions.
I will turn now to a very sketchy introduction to the formalism of CK, just to
have the minimal instruments for understanding both “agreeing to disagree”
and “correlated equilibria as expression of bayesian rationality”.

Formalism and preliminaries

Here are some preliminaries and a theorem that we need in the proof of
Aumann’s theorem.

I will follow Osborne and Rubinstein, Chapter 5.
We have Ω (finite, always, to simplify techniques) and P1,P2 two (informa-
tion) partitions of Ω.
Notice that a partition Pi (i = 1, 2) identifies an information function Pi, in
a obvious way:

Pi : Ω→ 2Ω\{∅}. (2Ω denotes the set of all subsets of Ω)

Pi(ω) is just the set of Pi who contains ω.
We shall say that an event F ⊆ Ω is SELF EVIDENT between 1 and 2 if
FOR ALL ω ∈ F we have that Pi(ω) ⊆ F, i = 1, 2.
An event E ⊆ Ω is CK between 1 and 2 IN THE STATE ω ∈ Ω if there is a
self-evident event F st: ω ∈ F ⊆ E.
Notice that the following result holds.

Theorem 1 Given Ω,P1,P2 and an event F , the following are equivalent:
1) F is self-evident between 1 and 2.
2) F is union of members of the partitions Pi, i = 1, 2
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Proof.
1)⇒ 2)
Because ∀ω ∈ F,Pi(ω) ⊆ F for i = 1, 2 we have that E = ∪ω∈EPi(ω), for
i = 1, 2.
Notice that Pi(ω) is an element of the partition Pi, due to the way in which
we defined Pi.

2)⇒ 1)
Since
F = ∪α∈AP1,α with P1,α ∈ P1 ∀α ∈ A and
F = ∪β∈BP2,β with P2,β ∈ P2 ∀β ∈ B,
clearly, every ω ∈ F will be in some P1,α (with P1,α ⊆ F ) and in some P2,α

(again, with P2,α ⊆ F ).
So, F is self-evident (between 1 and 2).
Notice that I have skipped completely the interesting issue of links between
knowledge operation and information functions. See, once more, chapter 5
of O-R.

Aumann’s theorem and its proof

We have Ω (finite), and p, a probability distribution on Ω (to be interpreted
later as the “common prior”).
We remind that a function P : Ω → 2Ω\{∅} is said to be an information
function. We shall assume that P satisfies the following conditions:

ω ∈ P (ω) for all ω ∈ Ω
if ω′ ∈ P (ω), then P (ω) = P (ω′)

It can be shown that P is “partitional” (i.e., there is a partition such that
for all ω ∈ Ω, P (ω) is just the element of the partition containing ω) if and
only if P satisfies the two conditions above.

Let P be an information function and let E be an event.
Given ω ∈ Ω, at ω the DM will assign to E the probability

p(E|P (ω))

(i.e. the probability of E, conditional on P (ω)).
In an example, E was the event: sum of dice =8.
And, for example, at ω = (1, 3) we had p(E|P1(ω)) = 0 p(E|P2(ω)) = 1

6
.
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Remark : the event that “DM i assigns the probability pi to E” is:

{ω ∈ Ω : p(E|Pi(ω)) = pi}.

Theorem 2 It is given Ω finite and a probability p on Ω (the common prior).
We are given two information functions P1 and P2.
Assume that it is CK between 1 and 2 in some state ω? ∈ Ω that 1 assigns
probability p1 to same event E and that 2 assigns probability p2 to E.
Then, p1 = p2

Proof. The event “1 assigns probability p1 to E and 2 assigns probability
p2 to E ” is:

{ω ∈ Ω : p(E|P1(ω)) = p1} ∩ {ω ∈ Ω : p(E|P2(ω)) = p2}

Since it is assumed to be CK, there is a self evident F s.t.:

ω? ∈ F ⊆ {ω ∈ Ω : p(E|P1(ω)) = p1︸ ︷︷ ︸
∗

} ∩ {ω ∈ Ω : p(E|P2(ω)) = p2}

Thanks to the theorem proved above, we have that F is a union of members
of the partition P1 and P2.
So, F = ∪α∈AP1,α = ∪β∈BP2,β.
Now, notice that, for every α ∈ A, p(E|P1,α) = p1: to be sure of that, it is
enough to notice that P1,α is one of the P1(ω) that appear in ∗.
In more detail:
Take ω ∈ F .
Because ω ∈ ∗, we have that p(E|P1(ω)) = p1.
But ω ∈ F , so P (ω) is one of the elements of the info partition whose union
gives F . That is, P1(ω) = P1,α for some α ∈ A.

So, p(E|P1,α) = p1 for every α ∈ A.
Hence, p(E| ∪α∈A P1,α) = p1

Namely, [ p(E|P1,α′ = p1 and p(E|P1,α′′) = p1 ] IMPLIES that p(E|P1,α′ ∪
P1,α′′) = p1

So, p(E|F ) = p.
But the same reasoning can be repeated for p2. So, we get p(E|F ) = p2.
But p(E|F ) is a well defined number . . .


