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Abstract

This paper develops a simple model to examine the interaction between partner choice and
individual behavior in games of coordination. An important ingredient of our approach is the way we
model partner choice: we suppose that a player can establish ties with other players by unilaterally
investing in costly pairwise links. In this context, individual efforts to balance the costs and benefits
of links are shown to lead to a unique equilibrium natetion architectureThe dynamics of network
formation, however, has powerful effects on individual behavior: if costs of forming links are below
a certain threshold then players coordinate on the risk-dominant action, while if costs are above this
threshold then they coordinate on the efficient action. These findings are robust to modifications
in the link formation process, different specifications of link formation costs, alternative models of
mutations as well as the poB#ity of interaction amongridirectly connected players.
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1. Introduction

In recent years, several authors have exeithe role of interaction structure—
different terms like network structure, neighborhood influences, and peer group pressures,
have been used—in explaining a wide range of social and economic phenomena.
This includes work on social learning and adoption of new technologies, evolution of
conventions, collective action, labor markets, and financial fradillige research suggests
that the structure of interaction can be decisive in determining the nature of outcomes.
This leads us to examine the reasonableness/robustness of alternative structures within a
model in which the social network is itself an object of study aad@volves with the other
dimensions of agents’ choice.

More specifically, in the present paper we apply this approach to the following problem:
the influence of link formation on individual behavior in games of coordingidhere is
a group of players, who have the opportunity to play>a 2 coordination game with each
other. This game has two pure-strategy Nash equilibria, one of them Pareto efficient (but
risk-dominated) and the other risk dominaht{ inefficient). Two players can only play
with one another if they have ‘link’ between them. These links are made on individual
initiative. They are also costly to form, in the sense that it takes effort and resources
to create and maintain them. A link permits several interpretations; examples include
communication links (with messages sentnfr@ne person to another), investments of
time and effort by two persons in building a common understanding of a research problem,
or travel by one person to the location of another to carry out some joint project.

The link decisions of different players define a network of social interaction. In addition
to the choice of links, each player has to select an action that she must use in all the games
that she engages in. Thus, given the incentives of individuals to form (or destroy) their
links, twin processes of link and action adjustment unfold jbiatly determine the social
outcome. We are interested in the nature of networks that emerge and the effects of link
formation on social coordination. We mostly focus on a setting where links as well as
actions in the coordination game are chosefinoviduals on an independent basis. (The
idea that links can be one-sided is closer in spirit to the first and third examples of links
given above.) This approach of one-sided links allows us to explore the implications of link
formation for social coordination as parta@ non-cooperative game, which facilitates the
exposition greatly.

We start with a consideration of the static problem. Here we find that a variety of
networks—including the complete network, the empty network and partially connected
networks—can be supported at Nash equilibfithe static (strategic-form) game induced.

1 see, e.g., Allen and Gale (2000), Bala and Goyal (1998), Chwe (2000), Coleman (1966), Ellison and
Fudenberg (1993), Ellison (1993), Granovetter (19 HBag and Lagunoff (2000), and Morris (2000), among
others.

2 Many games of interest have multiple equilibria. Thedst of equilibrium selection (which manifests itself
most sharply in coordination games) therefore occup@ngral place in game theory. We discuss the contribution
of our paper to this research in greater detail below.

3 In a subsequent section we elaborate on alternatiwaulations of link formation and argue that the main
insights are robust to a variety of modifications (see Section 4).
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Moreover, the society can coordinate on different actions and conformism as well as
diversity with regard to actions of individuals is possible at equilibrium. The immediate
counterpart of this multiplicity of Nash equilifa is that any (best-response) learning
dynamics must also have multiple rest pointdiich in turn motivates an examination

of the stochastic stability of different outcomes.

To this end, we propose a dynamic model in which, at regular intervals, individuals
choose links and actions to wimize (myopically) their respctive payoffs. Occasionally,
they also make errors or experiment. Our interest is in the nature of long-run outcomes,
when the probability of these errors is small. This leads to clear-cut predictions, both
concerning the architecture of networks as well as the nature of social coordination.

First, we show that, provided the costs of link formation are not too gy network
architecture that is robust enough to be observed a significant fraction of time in the long
run (i.e. occurs at so-tad stochastically stable states) must be complgfg. 1a gives
an example of a complete network in a society with 4 players, where a filled circle lying
on the edge near a player indicates that this player has formed, or supports, that link.)
This implies that partially connected networks, even if they define Nash equilibria of the
social game (and thus rest-points of the pdration-free best-response dynamics), are just
ephemeral situations in the long run.

Secondly, we also find that in the long-run states (where the social network is complete),
players always coordinate on the same action, i.e. social conformism obtains. However, the
specific nature of coordination sharply degs on the costs of link formation. There is a
threshold value in the interior of the payoff range such that, if the costs of link formation are
below the threshold, players coordinate oa tisk-dominant action. In contrast, if those
costs are above that threshold, players coordinate on the efficient action at all stochastically
stable states. This is the content of our main result, Theorem 3.1. In sum, therefore, our
analysis reveals that, even though the eventual architecture of the social network is the same
(i.e. complete) in all “robust” cases, tpeocesf network formation (i.e. the dynamics by
which links are created and destroyamat of equilibriun) has crucial implications for the
nature of social coordination. Specifically,eédds to very different conclusions concerning
the strategy choice selected in the long run, as the magnitude of linking costs changes. We
elaborate on some aspects of these reamitksketch the intuition underlying them.

1>—°—< 2 2
4 ——o3 4 —e—1 ——3
(@) (b)
Complete network Center-sponsored star
Fig. 1.

4 Of course, if the linking cost is higher than the nmaxim payoff in the coordination game, only the empty
network can prevail.
5Ihha complete network, every pair of players is directly linked.
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First, we stress that thdynamicsof link formation play a crucial role in the model.
Despite the fact that the only architecture that is stochastically stable (within the interesting
parameter range) is the complete one, playbehavior in the coordination game is
differentdepending on the costs fdrminglinks. Yet if the network were to remain fixed
throughout, standard arguments indicate that the risk-dominant action must prevail in the
long run (cf. Kandori et al., 1993). This serves to highlight the fact that, indeed, it is the
link formationprocesghat, by allowing for theso-evolution of the links and actions, plays
a decisive role in shaping individual behavior in our model.

Secondwe want to develop some intuition ohe sharp relationship found between
the costsof forming links and the corresponding behavior displayed by players in the
coordination game. On the one hand, note the obvious fact that, if the cost of forming links
is small and the gross payoffs to be earned in the game are p&sjilagers wish to be
linked with everyone irrespective of the actions they choose. Hence, from an individual
perspective, the relative attractiveness of different actions is fqatnsitiveto what is
the network structure faced by any given @at the time of revising her choices. In
essence, a player must make her fresh choices as if she were in a complete network.
In this case, therefore, the risk dominant and inefficient convention prevails since, under
complete connectivity, this convention is dar to destabilize (through mutations) than the
efficient but risk-dominated one. By contrast, if costs of forming links are high, individual
players choose to form links only with those who lead to substantial gross payoffs. This, in
turn, leads to more selective linking decisions by players and a reduction in their strategic
uncertainty, consequently facilitating the emergence of the efficient action.

Third, we elaborate on the role of cost-bearing in link formation. In our model, links
are one-sided, i.e. they are taken at the initiative of one player, who also incurs its cost.
This brings in the issue of externalities in the link formation process and the potential for
free-rider problems. But perhaps more interestingly, it also has an important bearing on the
different vulnerability to change displayeg the very different ways of supporting a given
architecture’. To fix ideas, consider a state where the social network is complete and all
players choose a common action. What is the underlying pattern of links that makes some
such state more fragile to a particular set of mutations? A moment’s reflection suggests
that the particular state of that kind which is most fragile is the one where the mutant
players induce the strongest externalitiegi(#vus incentives to change) on the rest of the
players. This happens when, collectively, all of the mutants support (i.e. have active) links
to the remaining players. If, for concreteness, the mutants are indexed froknantbthe
other players front 4+ 1 ton, some such (complete) network would be one where every
playeri supports a link t@veryother player with higher index. In fact, our analysis yields
the insight that such a highgsymmetrigattern of connections enhances the fragility of
otherwise stationary states and thus must be at the origin of the paths of least-resistance

6 The role played by our assumption that the game payo#gositive (or at least non-negative) is discussed
in Section 2.2. In Section 4, we contemplate alternative variations of the model that may dispense with it.

7 Note, for example, that there ar¢(@-1/2 strategy profiles that support (with non-redundant links)
a complete network witlw players. Clearly, these strategy prdilallow for wide variation in the number of
links formed by individual players (& hence also a wide range of payoffs).
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that underlie the notionfetochastic stabilitf. This, again, serves to illustrate the interplay
between network structure and action awihat is at the heart of our analysis.

We now place the paper and the results in the context of the literature. Traditionally,
sociologists have held the view that individual actions, and in turn aggregate outcomes, are
in large part determined by interaction structure. By contrast, economists have tended to
focus on markets, where social ties and thecsfic features of the interaction structures
between agents are typically not importalmt recent years, economists have examined
in greater detail the role of interaction structure and found that it plays an important
role in shaping important economic phenomena (see the references given above, and also
Granovetter, 1985). This has led to a study of the processes through which the structure
emerges. The present paper is part of this general research program.

Next, we relate the paper to work in economics. The paper contributes to two research
areas: network formation games and equilibrium selection/coordination problems. In
earlier work on network formation it is assumed that the sole concern of players is
whom they connect to—i.e. the only strategic considerations are associated to their linking
decisions (see, e.g., Aumann and Myerson, 1989; Bala and Goyal, 2000; Dutta et al.,
1995; and Jackson and Wolinsky, 1996). By contrast, the present paper presents a unified
framework in which the emergence of social netwasksl the behavior of linked players
can be jointly studied.

Next we outline briefly the relationship of our paper to the literature on equilibrium
selection in games. In many games of interest, multiple equilibria arise naturally,
and so recent years have seen a consideramount of research on equilibrium
selection/coordinatiof® An important finding of this work is that interaction structure (i.e.
the social network) matters and that, by varying it, the rate of change as well as the long-run
outcome can be significantly alteréHThis underscores the importance of endogenizing
the social network, i.e., examining the circumstances under which different interaction
patterns emerge. From a methodological point of view, a natural way to do this is by
assessing the stochastic stability of the different networks arising at Nash equilibria. This

8 This observation is related to some recent work byehilet al. (2000) on the error and attack tolerance
displayed by different network arrangents. Specifically, these authotsoss that the wide dispersion in the
distribution of links in many complex networks (e.geti/orld-Wide Web) makes them rather fragile to targeted
attack although very tolerant to unguided error. In our cadesre mutation probabilities are conceived as very
small, the “attack fragility” is the dominant consideratiand this lends to networks with unequal distribution of
links their key role in the analysis.

9 Inindependent work, Droste et al. (1999), Jackson and Watts (2002) and Skyrms and Pemantle (2000) study
endogenous network formation. The first and third pdpmre a model of link formation based on individual
incentives and are more directly related to our papee difmary difference between these papers and our paper
pertains to the timing of actions and links. We assuna the two are simultaneous, while the earlier papers
assume that links and actions are revised one at a time, taking the other as given. This difference leads to different
conclusions. We further discuss the issue of timing of actions and links in Section 4.6.

10 One strand of this work considers dynamic modelsisTwork includes Blumg1993), Canning (1992),
Ellison (1993), Kandori et al. (1993), and Young (1993amg others. For a consideration of this same
equilibrium selection problem from a different (“edwetl) perspective, the reader may refer to the work of
Harsanyi and Selten (1988) or the more recent paper by Carlson and van Damme (1993).

11 see, for example, Ellison (1993), Goyal (1996), Led ¥alentinyi (2000), Morris (2000), and Robson and
Vega-Redondo (1996), among others.
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is the route undertaken in the present paper, where we adapt the techniques customarily
used in the evolutionary literature to the peat scenario (where players choose not only
actions but partners as well).

Somewhat more specifically, the present approach is related in spirit to that subbranch
of recent evolutionary literature where players are allowed to move among a fixed set of
locations!? The basic insight flowing from it is that, if individuals can separate/insulate
themselves easily from those who are playing an inefficient action (e.g., the risk-
dominant action), then efficient “enclavesill be readily formed and eventually attract
the “migration” of others (who will therefore turn to playing efficiently). In a rough sense,
one may be inclined to identifgasymobility with low costs of forming links. However,
the considerations involved in each case turntotne very different, as is evident from the
stark contrast between our conclusions and those of the mobility literature (recall the above
summary). There are two main reasons for thustcast. First, in our case, players do not
indirectly choose their pattern of interaction with others by moving acrqegea&pecified
network of locations (as in the case of player mobility). Rather, they conslirectly their
interaction network (with no exogenous restrictions) by choosing those agents with whom
they want to play the game. Second, the cost of link formation is paid per link formed and
thus becomes truly effective only if it is high enough. In a heuristic sense, we may say that
it is precisely the restrictedfiobility” that high costs induce kich helps insulate (and thus
protect) the individuals who are choosing the efficient action. If the link-formation costs
are too low, the extensive interaction this facilitates may have the unfortunate consequence
of rendering risk-dominance considerations decisive.

The rest of this paper is organized as follows. Section 2 describes the framework. Section
3 presents the results for the basic model. Section 4 explores the robustness of our findings
with respect to a number of changes in the model such as modifications in the link
formation process, different specifications of link formation costs, alternative models of
mutations as well as the possibility of inéetion among indirectly connected players.
Section 5 concludes.

2. Themode
2.1. Networks

Let N ={1,2,...,n} be a set of players, where> 3. We are interested in modeling
a situation where each of these players damose the subset of other players with whom
to play a fixed bilateral game. Formally, lgt= (gi1, ..., &.i—1, &i.i+1, - - -, gin) b€ the set
of links formed by playei. We suppose thag;; € {1, 0}, and say that player forms a
link with player j if g;; = 1. The set of link options is denoted By. Any player profile
of link decisionsg = (g1, g2, ..., 1) defines a directed graph, calleshetwork.Abusing
notation, the network will also be denoted by

12 see e.g. Ely (2003), Mailath et al. (1994), Oechs&l®97), or Bhaskar and Vega-Redondo (2003), among
others.



184 S. Goyal, F. Vega-Redondo / Games and Economic Behavior 50 (2005) 178-207

/

l1—— 2

Fig. 2.

Specifically, the networl has the set of player§ as its set ofrerticeswhile its set of
arrows,I” C N x N, is defined as followsi™ = {(i, j) € N x N: g;; = 1}. Graphically,
the link (i, j) may be represented as an edge betwesnd j, a filled circle lying on the
edge near ageiitindicating that this agent has formed (or supports) that link. Every link
profile g € G has a unique representation in this manner. Figure 2 depicts an example. In
it, player 1 has formed links with players 2&8, player 3 has formed a link with player 1,
while player 2 has formed no links.

Given a networlg, we say that a pair of playeifnd; are directly linked if at least one
of them has established a linked with the other one, i.e. if{@axg;;} = 1. To describe
the pattern of players’ links, it is useful to define a modified versiop,afenoted byg,
that is defined as follows;; = maxg;;, g;;} for eachi and; in N. Note thatg;; = g;; SO
that the index order is irrelevant. We refergg as an active link for playerand a passive
link for player ;.

We say there is @athbetween and if either g;; = maxg;;, g;i} = 1 or there exist
agentsji, ..., j, distinct from each other andand j such thatg; j, =--- =g, .j., =
-~ =gj..j = 1. A sub-graplg’ C g is called acomponenbf g if for all i, j € g, i # j,
there exists a path ig’ connecting and j, and for alli € ¢’ andj € g, g;j = 1 implies
8fj = 1. A network with only one component is called connected. On the other hand, a
network (or a component) is said to be complete if every pair of nodes in it is connected by
alink in either direction (rechFig. 1a). Finally, a networks called minimally connected if
the removal of any single link renders it disconnected. A simple example of such a network
is provided by the center-sponsored star of Fig. 1b.

2.2. Social game

Individuals located in a social network play ax2 symmetric game in strategic form
with common action set. The set of partners of playelepends on her location in the
network. In the basic model we assume that two individuals can play a game if, and only
if, they have a direct link between them.

We now describe the bilateral game that is played between any two partners. The set of
actions isA = {«, B}. For each pair of actions, a’ € A x A the payoffs to the players are
given by Table 1, with the payoffs to the row player given first.

We shall assume that the game is one of coordination with two pure strategy equilibria,
(o, @) and(B, B). Without loss of generality we will also assume tlato) is the efficient
equilibrium. Finally, in order to focus on the interesting case, we will assume that there is

13 since agents choose strategies independently of eheh, tivo agents may simultaneously initiate a two-
way link, as seen in the figure.
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Table 1

o d,d e f

B f.e b,b

a conflict between efficiency and risk domiranThese considerations are summarized in
the following restrictions on the payofté:

d> f, b>e, d>b, d+e<b+ f. (1)

An important feature of our approach is that links aostly. Specifically, every agent
who establishes a link with some other player incurs a ees0. Thus, we suppose that
the cost of forming each link is independentb& number of links being established and
is the same across all players.

In the basic model we assume that links ane-sidedThis aspect of the model allows
us to use standard solution concepts from non-cooperative game theory in addressing the
issue of link formation. We shall suppose that the payoffs in the bilateral game are all
positive and, therefore, no player has any incentive to refuse links initiated by other players.
There are different ways in which the assumption of positive payoffs in the coordination
game can be relaxed. One route is to dispense with any restriction on payoffs but suppose
that, when player supports a link to playey, the payoff (which may be negative) flows
only to i. This formulation may be interpreted as reflecting a model of peer groups and
fashion, where asymmetric flow of influence seems a natural feature. Another possible
route to tackle possibly negative payoffs would be to maintain the bilateral nature of
payoffs but give players the option to refuse the links initiated by others. We discuss a
variety of alternative formulations of the link formation process in Section 4.

Every playeri is obliged to choose the same action in the (possibly) several bilateral
games that she is engaged in. This assumpsiovatural in the present context: if players
were allowed to choose a different action for every two-person game they are involved in,
this would make the behavior of players in any particular game insensitive to the network
structure. Thus, combining the former considerations, the strategy space of a player can be
identified withS; = G; x A, whereg; is the set of possible link decisions bgndA is the
common action space of the underlying bilateral gdfe.

We can now present the payoffs of the social game. Given the link decisions of
players,g = (g1, 82,...,8n), let N(i; ¢) = {j € N: g;i; = 1} be the set of agents in the

14 Our results extend in a natural way in case the risk-dominant equilibrium is also efficient, d.ex,df>
b+ f. In particular, players coordinate on tie, «) equilibrium, which is risk-dominant as well as efficient,
in the long run.

15 |n our formulation, players choose links and actionthimcoordination game at the same time. An alternative
formulation would be to have playechoose links first and then choose an8, contingent on the nature of the
network observed. Finally another alternative, considered by the literature, is to postulate that the action and every
link are revised separately (cf. Footnote 9 and Section 4.6).
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induced network with whom player hasestablishedinks, while v(i; g) = [N(; g)| is
its cardinality. Similarly, denote bw(i; g) = {j € N: g;; = 1} the set of agents with
whom playeri is directly connected (by active or passive links), whilg; g) = |N(i; g)|
stands for the cardinality of this set. Then, given the strategies of other playges,
(s1,..-,8-1,8i+1, - - - » S ), the payoff to a playerfrom playing some strategy = (g;, a;)
is given by

Mi(si,s—i)= Y m(ai,a;) —v(i;g)-c. )
JEN(i;8)

We note that the individual payoffs are aggregated across the games played by him. In
much of earlier work, e.g. Kandori et al. (1993) or Ellison (1993), the distinction between
average or total payoffs was irrelevant since the size of the neighborhood was given. In
our model, however, where the number of games an agent plays is endogenous, we want
to explicitly account for the influence of the size of the neighborhood and thus choose the
aggregate-payoff formulatiot?.

These payoff expressions allow us to particularize the standard notion of Nash
Equilibrium to each of the two alternative scenarios. Thus, for the model with direct links,
a strategy profile™ = (s7, ..., s;) is said to be &ash equilibriumif, forall i € N,

I (s7, s ) > i (s, %), Vsi € 8. (3)
On the other hand, a Nash equilibrium in either scenario will be caliect if every
player gets a strictly higher payoff with her current strategy than she would with any other

strategy. The set of Nash equilibria will be denotedstiyand that of strict Nash equilibria
by $**.

2.3. Dynamics

Time is discrete, and denoted by=1, 2, 3, .... At eachz, the state of the system is
given by the strategy profile(r) = [(g: (1), a; ())]"_, specifying the action played, and
links established, by each playee N. At every periodr, there is a positive independent
probability p € (0, 1) that any given individual gets a chance to revise her strategy. If she
receives this opportunity, we assume that she selects a new strategy

si(¢) € arg m?xn,» (si,s—i(t — 1)). (4)
§; €9

Ateachr, the state of the system is given by the strategy prefile= [(g; (1), a; (1))]7_;
specifying the action played, and links established, by each playaf. At every period,
there is a positive independent probabijitg (0, 1) that any given individual gets a chance
to revise her strategy. If she receives thpgportunity, we assume that she selects a new
strategy

si(t) earg mglxl'[,- (sivs—i(t — D). (5)
RSV

16 When players seek to maximize average payoffs, the size of the interaction group plays no essential role and
we conjecture that at least some efficient sfaée a state where all players choose actigmust be stochastically
stable. The intuition for this conjecture is that whengitiorhood size is irrelevant per se it should be particularly
easy to destabilize inefficient states.
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That is, she selectsrayopichest response to what other players chose in the preceding
period!’ If there are several strategies that fulfill (4), then any one of them is taken to
be selected with, say, equal probability. This strategy revision process defines a simple
Markov chain onS = §1 x --- x §,,. In our setting, which will be seen to display multiple
strict equilibria, there are several absorbing states of the Markov éhdinis motivates
the examination of the relative robustness of each of them.

To do so, we rely on the approach proposed by Kandori et al. (1993) and Young (1993).
We suppose that, occasionally, players maketahkies, experiment, or simply disregard
payoff considerations in choosing their stigitss. Specifically, we assume that, conditional
on receiving a revision opportunity, a pktychooses her strategy at random with some
small “mutation” probability > 0. For anye > 0, the process defines a Markov chain that
is aperiodic and irreducible and, therefore, has a unique invariant probability distribution.
Let us denote this distribution by.. We analyze the form of.. as the probability of
mistakes becomes very small, i.e. formallyeasonverges to zero. Define limg e = f&.

When a state = (s1, 52, ..., s,) hasii(s) > 0, i.e. itis in the support of, we say that it is
stochastically stabldntuitively, this reflects the idea that, even for infinitesimal mutation
probability (and independently of initialonditions), this state materializess@nificant
fraction of time in the long run.

3. Evolving networks and social coor dination

We first characterize the Nash equilibrium of the social game. We then provide a
complete characterization of the set tdchastically stable social outcomes.

3.1. Equilibrium outcomes

Our first result concerns the nature of networks that arise in equilibria. If costs of link
formation are low(c < ¢), then a player has an incentive to link up with other players
irrespective of the actions the other players are choosing. On the other hand, when costs
are quite high (specificallyy < ¢ < d) then everyone who is linked must be choosing the
efficient action. This, however, implies that it is attractive to form a link with every other
player and we get the complete network again. Thus, for relatively low and high costs, we
should expect to see the complete network. In contrast, if costs are at an intermediate level

17 we are implicitly assuming that players have complete information on the network structure as well as on
the profile of actions. This assumption simplifies the strategy choice significantly in a setting where a player can
potentially play with everyone else in the society. Anetimeportant simplification derives from the assumption
that players are fully myopic and hold static expectatiofisis may justified if the adjustment of the process
(say, due to inertia of choice) is quite slow and playersralaively impatient. If these conditions do not apply,
however, the dynamics of the process should be significaiffiicted, e.g. the formation of a mutually beneficial
link may often involve a strategic tour de force and tlb@asequent delays familian ipublic-good contexts (cf.

Bliss and Nalebuff, 1984). For an evolutionary approtzimodeling these issues, the reader is referred to the
work of Blume (1995) and Lagunoff and Matsui (1995).

18 We note that the set of absorbing states of the Markov chain coincides with the set of strict Nash equilibria

of the one-shot game.
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(f < ¢ < b), aricher set of configurations is possible. On the one hand, sitcg (> ¢),

the link formation is only worthwhile if other players are choosing the same action. On the
other hand, since < b (< d), coordinating at either of the twequilibria (in the underlying
coordination game) is better than not playing the game at all. This allows for networks with
two disconnected components in equilibriaglfbrmer considerations are reflected by the
following result, whose proof is given in Appendix A.

Proposition 3.1. Supposél) and(2) hold.

(a) If ¢ <min{f, b}, then an equilibrium network is complete.

(b) If f <c < b, then an equilibrium network is either complete or can be partitioned
into two complete componenit3.

(c) If b < ¢ <d, then an equilibrium network is either empty or complete.

(d) If ¢ > d, then the unique equilibrium network is empty.

Next, we characterize the Nash equildbrof the static game. First, we introduce
some convenient notation. On the one hand, recall giadenotes the empty network
characterized bgfj =0foralli, j e N (i #j). We shall say that a netwogkis essential
if gijgji =0, for every pair of players and j. Also, letG° = {g: Vi,j e N, gi; =1,
gijg;ji = 0} stand for the set of complete and essential networks on thé.semalogously,
for any given subse¥ C N, denote byG¢(M) the set of complete and essential sub-graphs
onM. Given any state € S, we shall say that = (g, a) € " for someh € {«, 8} if g € G€
anda; = h for all i € N. More generally, we shall write = (g, a) € S%# if there exists a
partition of the populatio into two subgroupsy® andN# (one of them possibly empty),
and corresponding componentsgfg® andg?, such that:

(i) g%e GS(NY), gf € GS(NP), and
(i) Vi e N*, a;=a;Vie NP, a;=8.

With this notation in hand, we may state the following result.

Proposition 3.2. Supposél) and(2) hold.

(@) If ¢ < min{f, b}, then the set of equilibrium staté§$ = 5« U S5,

(b) If f <c<b, thenS® U SP c §* c §%P, the first inclusion being strict for large
enoughn.

() Ifb<c<d, thenS* =5*U{(g% (B,B,...,B)}.

(d) If ¢ > d, thenS* = {g¢} x A".

Parts (a) and (c) are straightforward; we therefore elaborate on the coexistence equilibria
identified in part (b). In these equililari there are two unconnected groups, with each

19 Our parameter conditions allow botfi < b and b < f. If the latter inequality holds, part (b) of
Proposition 3.1 (and also that of Proposition 3.2) applies trivially.
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group adopting a common action (differentéach group). The strategic stability of this
configuration rests on the appeal of ‘passive’ links. A link suclgas= 1 is paid for

by playeri, but both players and j derive payoffs from it. In a mixed equilibrium
configuration, the links in each group must leyghly, evenly distributed. This means that

all players enjoy some benefits from pasdimés. In contrast, if a player were to switch
actions, then to derive the full benefits of this switch, she would have to form (active) links
with everyone in the new group. This lowers the incentives to switch, a consideration which
becomes decisive if the number of passive links is large enough (hence the requirement of
largen).

The above result indicates that, whenever the cost of links is not very high (i.e. not
above the maximum payoff attainable in the game), a wide range of outcomes can arise in
equilibrium. For example, under the parameatenfigurations allowed in parts (a) and (c),
states where either of the two actions is homogeneously chosen by the whole population
can arise in equilibrium. On the other hand,fif< ¢ < b, states where neither action
homogeneity nor full connectedness obtains can arise in equilibrium. The model, therefore,
raises a fundamental issuemgjuilibrium selection.

3.2. Dynamics

This section addresses the problem of equilibrium selection by using the techniques
of stochastic stability. As a first step in this analysis, we establish convergence of the
unperturbed dynamics for thelegant parameter range.

Let S denote the set of absorbing states of the unperturbed dynamics. In view of
the postulated adjustment process, it follows that there is an one-to-one correspondence
betweenS and the class ostrict Nash equilibria of the social game, i.6.= $**.
Proposition 3.2 characteriza§ Nash equilibria of this game. But, clearly,df< b, every
Nash equilibrium is strict, while ib < ¢ < d, only the Nash equilibria ir§“ are strict.

Finally, no strict Nash equilibrium exists i > d. So the next result focuses on the case
wherec < d.

Proposition 3.3. Suppos€1)<2) hold andc < d. Then, starting from any initial strategy
configuration, the best response dynamics converges to a strict Nash equilibrium of the
social game, with probability one.

The proof of the above result is given in Appendix A. This result delimits the set of
states that can potentially be stochastically stable since, obviously, every such state must
be a limit point for the unperturbed dynamics. Let the seftothastically stable statéme
denoted bﬁz {s € S: [i(s) > 0}. The following result summarizes our analysis.

Theorem 3.1. Suppos¢l) and(2) hold. There exists songes (e, b) such that ifc < ¢ then
S SP while if ¢ < ¢ < d thenS = §%, providedn is large enougiC Finally, if ¢ > d then
={g°} x A".

20 The proviso o is simply required to deal with possible @gfer problems when studying the number of
mutations needed for the various transitions.
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Recall that a social outcome is stochastically stable if it lies in the support of the limit
distribution, 1. In order to determine this support, we use the techniques introduced in
Kandori et al. (1993) and Young (1993). They can be summarized as follows. Fix some
states € S. An s-tree is a directed graph ghwhose root i and such that there isumique
(directed) path joininginy others’ € S to s. For each arrow’ — s” in any givens-tree,
a “cost” is defined as the minimum number of simultaneous mutations that are required for
the transition frons’ to s” to be feasible through the ensuing operation of the unperturbed
dynamics alone. The cost of the tree is obtained by adding up the costs associated with all
the arrows of a particulas-tree. The stochastic potential ofis defined as the minimum
cost across alf-trees. Then, a statec S is seen to be stochastically stable if it has the
lowest stochastic potential acrosssaé S.

In our framework, individual strategies involve both link-formation and action choices.
This richness in the strategy space leads to a corresponding wide variety in the nature of
(strict) Nash equilibria of the social game. There are two facets of this variety:

(a) we obtain three different types of equilibria in terms of action configurati®ns?
ands*#, and

(b) there are a large number of strategy profiles that support the complete connectivity
prevailing at equilibrium configurations recall Footnote 7.

This proliferation of equilibria leads us to develop a simple relationship between the
different profiles. In particular, we consider strategy profiles within the $e(& = «, )
and show that states in each of these sets can be connected by a chain of single-mutation
steps, each such step followed by a suitable operation of the best-response dynamics. Let
distance between two networlgsand g’ be defined as followsd(g, g’) = d(g’, g) =
>.ij18i.j — & ;1/2. In words, this distance is simply a measure of the number of links
that are different across the two networks. With this metric in place, we have:

Lemma 3.1. For eachs € S", h = a, 8, there exists an-tree restricted tas” such that
for all arrows s” — s” in'it, d(g’, g”) = 1, whereg’ andg” are the networks respectively
associated ta” ands”.

The proof of this lemma is given in Appendix A. This lemma implies that, provided
Sh ¢ S, the (restricted) tree established by Lemma 3.1 for any S involves the
minimum possible costs”| — 1. This lemma also indicates that, in the language of
Samuelson (19945 (if ¢ < d) and alsoS? (if ¢ < b) arerecurrent setsThis allows
each of them to be treated as a single “entity” in the following two complementary senses:

(i) if any state in one of these recurrent sets is stochastically stable, so is every other state
in this same set,

(ii) in evaluating the minimum cost involved in a transition to, or away from, girgn
state in a recurrent set, the sole relevastie concerns the minimum cost associated
to a transition to, or away fronsomestate in that recurrent set.
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Using (i)—(ii), the analysis of the model can be greatly simplified. To organize matters,
it is useful to consider different ranges©$eparately.

Let us start with the case whereQc < e, where the set of absorbing stafes: S* US#.
Since, by Lemma 3.1, the sef¢ andS? are each recurrent, the crucial point here is to
assess what is the minimum (mutation) cost across all path josnimgstate inS” to some
state ins"' for eachh, i’ = a, B, h # h'. Denote these costs by and let[z] stand for
the smallest integer no smaller than any givenR . With this notation in place, we state:

Lemma 3.2. Suppose thal < ¢ < e. Then

mﬂ’“=’7 b=e (n—l)—‘, m“ﬁ:’V d-f (n—l)—‘.
d—-f+b-e) d-fr+k-e

Thus,m?® > m®# for n large enough.

The proof, given in Appendix A, reflects the standard considerations arising in much
of the recent evolutionary theory where tfieed pattern of interaction involves every
individual of the population playing with all others. Now, if costs are l@ws ¢), such full
connectivity is not just assumed but arises from players’ own decisions, both at equilibrium
(i.e. when the unperturbed best-response dynamics is at a rest-point) and away from it.
In effect, this implies that the same basin-of-attraction considerations that privilege risk
dominance in the received approach adstect for it in the present case.

We next examine the case where: ¢ < min{f, b} whereS = 5% U S#. Now, since
¢ > e, players who choose actian no longer find it attractive to form links with other
players who choose actigh This factor plays a crucial role in the analysis. The following
result derives the relative magnitude of the minimum mutation costs.

Lemma 3.3. Suppose < ¢ < min{f, b}. Then
mﬂ’O‘:’V b-c (n_l)W’ m"‘ﬁ:[ ut'} (n—l)—‘.
d—fH+kB-o d=f+®-e

Thus, there is some e < ¢ < min{ f, b}, such that ifc < ¢ thenm?* —m*# > 0, while
if ¢ > ¢ thenm#* —m*# <0, for n large enough.

The methods used to prove this lemma are quite general; we use them in establishing
a number of other results required for the proof of Theorem 3.1. It is therefore useful to
explain them in the text.

Proof of Lemma 3.3. Lets® ands? be states ir5* andS?, respectively.

Step 1.Consider transitions from staté to states® and letk be the number of
mutations triggering it. If this transition is to take place after those many mutations, there
must be some player currently choosifigvho will then voluntarily switch tax. Denote
by ¢ the number of active links this playehoosego support to players choosirig
(h = a, B) and letr" stand for the number of passive links she receives from players
choosing: (h = «a, B). If she choosea, her payoff is given by

e =r%d +rPe+q%d —c). (6)
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Note that since > ¢, g# must equal zero. On the other hand, if the agent in question
were to continue wittg, her payoff would be equal to

mp = f + b +4%(f )+ b o). @

whereg” and#” are interpreted as the active and passive links that would be chosen by the
player if she adoptg. Clearly, we must have = #" for eachh = «, 8. Thus, if a switch
to « is to take place, it must be that

me —mp=(r* +q*)d — (r* +§*) f —rf(b—e) =GP (b—c) > 0. (8)

Note thatr® + g% =k, sincec < d and therefore the player who switchescdtawill
want to be linked (either passively or by supporting a link herself) to all other players
choosingy, i.e. to the total numbeékr of «-mutants. On the other hand, since min{f, b},
we must also have thaf + §f =n — k — 1 andr® + §% =7 + g% =k, i.e. the player
who chooseg® must become linked to all other players, both those chog$iagd those
choosingx.

We now ask: What is the lowest valuelotonsistent with (8)? Since> e, the desired
payoff advantage of actiom will occur for the lowest value of whenr? =## =0 and
thereforej? = n — k — 1. That is, if the desired transition is to take place, ieeessary
condition (8) holds for theminimumnumber of required mutations when the arbitrary
agent that must start the transition mapassive links from individuals choosing actifn
Recall thatn?* stands for the minimum number of mutations required for the transition.
From (8), it now follows that

ﬁ~0[

The above expression gives the minimum number of players choedsheg are needed
to induce some player to switch to actianacross all possible network structures. Next,
we argue that this number of mutations is adsidficientto induce a transition from some
sP to somes®. The proof is constructive.

The main idea is to consider a particular steffewhere its corresponding (complete)
network displays the maximal responsiveness to some suitably chosen mutations. Using
the observations on the distribution of active and passive links, this is seen to occur when
there are some players who support links to all others—those are, of course, players with
a “critical” role whose mutation would be most effective. Specifically, suppose that the
network prevailing ins? has every player= 1, 2, ..., n support active links to alj > i.

(This means, for example, that player 1 supports links to every other player whereas player
n only has passive links.) Then, recalling thai denotes the smallest integer no smaller
thanz, the most mutation-effective way of inducing the population to switch actionsfrom

to « is precisely by having the playets=1, 2, .. ., [ H] simultaneously mutate to action

and maintain all their links. Thereafter, a transition to some statell occur if subsequent
strategy revision opportunities are appropiiagequenced so that every player with index
J=TH1+1,...,nisgiven arevision opportunity in order. This, in effect, shows that the
lower bound in (9) is tight anek®* = [H1.

(n—1)=H. 9)
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Step 2. Consider next the transition from some stefteto a states”. Using arguments
from Step 1, it is easy to show thaf-# must satisfy

m%B > d—f
d—f)+bB—-e)

Again, we can use previous arguments to show fli#{ is sufficient.

Step 3.Finally, we wish to study the difference?® — m®# as a function of. For
low ¢ (close toe) and largen, this difference is clearly positive in view of the hypothesis
thatb — e > d — f. Next, to verify that it switches strict sign at most once in the range
¢ € (e, min{ f, b}), note thatd — H' is strictly declining with respect to in the interval
(e,min{f,b}). O

n—1)=H" (10)

Lemma 3.3 applies both to the case whigre f and that wheré > f. Suppose first that
b < f. Then, sinceH — H’ < 0 for ¢ = b, a direct combination of former considerations
leads to the desired conclusion for the parameter rangée, b]. We now take up the
casef < b and focus on the rangee ( f, b). We first derive the relative magnitude of the
minimum mutation costs far € S”, whereh = {a, ).

Lemma 3.4. Supposef < ¢ < b.

mbe — ’7 b-c (n—l)—‘, m*P = [L(H—D]

d—-f+m-o) d—co)+b—e)

Thus there is a threshold e [ £, b) such that ifc < ¢ thenm? % — m®# > 0, while if
¢ > ¢ thenmP® —m*P <0, for n large enough.

The arguments needed to establish this result are very similar to those used in the proof
of Lemma 3.3; we provide the computations in Appendix A.

The principal complication in casee [ f, b) is that the set of absorbing states in not
restricted toS® U S# but will generally include mixed states where the population is
segmented into two different action cponents (cf. Propositions 3.2 and 3.3). k€t*?,
for h = «, B, denote the minimum number of mutations needed to ensure a transition from
somes € S to somes € $%#. The first point to note is that by the construction used in
Lemma 3.3/n%% > m®Ff and, similarly,m?*# > mP-%. This implies that the transition
from any state in somé” towards a mixed equilibrium state i§# is costlier than a
transition towardss” (k' = h). Concerning now the converse transitions (i.e. from states
in S*# to eithers® or S#), the following lemma indicates that it is relatively “easy” since
it involves a suitable chain ainglemutations.

Lemma 3.5. Let f < ¢ < b and consider any equilibrium statee $*# involving two
non-degeneratéx and ) componentsg® and g#, with cardinalities|A(s)| > 0 and

|B(s)| > 0, respectively. Then, there is another equilibrium stetevith cardinality for

the resultinge componentA(s’)| > |A(s)| + 1 that can be reached fromby a suitable
single mutation followed by the best-response dynamics. An identical conclusion applies
to some equilibrium state’ with |A(s”)| < |A(s)] — 1.
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The proof of this lemma is given in Appendix A. We briefly sketch the argument here.
Fix some mixed state, and suppose the strategy of some playR¢s) mutates as follows:
she switches to actian, while everything else remains as before. Now, have all the players
in the 8 group move and suppose that they still wish to keep playing agti®@incec > f,
their best response is to delete their links with playétext, have all the players in group
« move; their best response is to form a link with playesincec < b. Finally, have player
i choose a best response; since the original state was an equilibriuearfd her best
response is to play actiom and delete all links with players in th& group. We have
thus increased the number@blayers with a single mutation. This argument extends in a
natural manner to prove the above result. We now have all the information to complete the
proof of Theorem 3.1.

Proof of Theorem 3.1. Consider first the case whete< b. If f > b, the setsS* and

S# are the only candidates for stochastic stability and we simply need to comgdte

versusm®%. Then, the desired conclusion follovdrectly from Lemmas 3.2-3.4. The

same applies iff < b butc < f. Thus, consider the case whefe< ¢ < b. Then, the states

in §«, s#, ands*# are possible candidates for stochastic stability. Take any stat§

for someh = o, . With the help of Lemmas 3.1 and 3.5 we can infer théttees for any

s € §¢ will have the following minimum costn® ¢ + |S%| 4 |S#| + |S%#| — 2. For any

s’ € SP, the situation is symmetric, the minimum cost being equat¥d® + |S*| + |S#| +

|S«#| — 2. Next, concerning any € S*#, we note that the correspondingree would

have to display a path joining some stateSthto s andsome path joining some~stateSﬁ

to s. Thus, the cost of such antree will be at leasi®? +m#* + 5| + |SP| + |S*#| — 3.

This expression is greater than the minims#inee costs fos € $" (h = «, B) since each

m""" > 1 if the population is large. We therefore conclude that a stat&®# cannot be

stochastically stable. Thus we only need to compefté with m#¢; the result follows.
Next, suppose that < ¢ < d. Then, the key point to observe is that the set of strict

Nash equilibria and hence the set of absorbing states is sisngl\§®. This immediately

establishes the result for this case. Finally, similar considerations apply to the case where

¢ > d, in which case Propositions 3.2 and 3.3 indicate that{g°} x A*. O

In our analysis we have not placed any riesitons on the number of links a player
can form and, in equilibrium, the nature of interaction is ‘global.’ This has the implication
that transitions from one strict Nash equilibrium to another require a number of mutations
which is a proportion of the total number of players. As is well known, for large populations
this implies that the rate of convergence will be slow. In section below we discuss the
possibility that players might be limited ihé number of links they can support, a modeling
feature which would have aggiificant bearing on this issue.

4. Discussion of the assumptions
In this section, we discuss the main assumptions underlying the analysis. We do so by

addressing in turn a number of variations of the basic model that highlight the role played
by some of its key features. Due to space constraints, we will not present the different
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models in detail, nor therefore state formally and prove the results we have obtained.
However, a full account of the proofs is available from the authors upon request.

4.1. The nature of link formation

An important aspect of our model is that link formatioroise-sidedFrom a methodo-
logical point of view this formulation has the advantage that it allows us to study the social
process of link formation and coordinatios a non-cooperative game; from a substantive
viewpoint this formulation is interesting since it allows for an explicit consideration of
the role of active and passive links. To clarify this assumption, we explore in turn two
variations of the model. In the first one, we maintain the feature that any link must be
unilaterally decided by a particular player, but suppose that she alone derives the benefits
of it. That is, the cost of links and the flow of benefits are both one-sided, which makes
passive links payoff-irrelevant. In the second variation, the links are two-sided in the sense
that both agents involved must express the desire to form it and bear an equal share
of the linking cost. However, we keep the feature that such decisions@ependently
adopted by each player, and therefore thk-fiormation process can be modeled as a non-
cooperative game.

4.1.1. One-sided active links

We have carried out a complete analysis of this model, whose main findings and
implications may be briefly summarized as follows. First, in the static setting, we have
shown that the only (non-empty) network that can arise is the complete network. Moreover,
in this network, everyone chooses the same action, thus social conformism obtains. These
results demonstrate that coexistence of different conventions and the possibility of an
unconnected society arises in our basic model solely due to the presence of (payoff-
relevant) passive links. Next we note that a complete network in the present setting with
only active links is one in which every player forms a link with every other player. Thus
there is only one possible strategy configuration that can support the complete network.
The only multiplicity that remims concerns the choice oft&an: both outcomes, everyone
choosing actiorx and everyone choosing acti@n are possible in equilibrium.

Our analysis of the (stochastic) dynamics revealsttiere is a cut-off value for the cost
of forming links¢ € (e, f), such that for allc < ¢, the risk-dominant actiom prevails,
while for all ¢ > ¢, the efficient actiomx prevails.It is worth noting that the cut-off level
of costsc with only active links is lower than the cut-off level of costshat arises in the
presence of active and passive links. Thus passive links have the effect of making the risk-
dominant action more likely. The intuition behind this finding is as follows. In our proof of
Theorem 3.1 we showed that transition across equilibria is easiest, in terms of ‘the number
of mutations required, when the pattern of link formation is very asymmetric. This creates
the maximum scope for passive links to act as a bridge to induce other players to switch
actions. This construction also reveals why the risk-dominant strategy is favored in a setting
with passive links. Passive links allow the connectedness of the network to be sustained,
without costs being incurred by the recipients of the links. In a situation where players
are choosing different actions, this has the effect of creating greater strategic uncertainty.
And, as is well known, such strategic uncertainty acts in favor of the risk-dominant action,
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which in turn helps explain why the risk-dominant action prevails under a wider range of
cost conditions once passive links are allowed.

4.1.2. Two-sided links through independent decisions

We next discuss the case where a link is formed if, and only if, both parties involved
offer to form a link, in which case the linking cost is divided equéfiywe have also
analyzed this model fully. The findings are broadly in line with the results of the one-sided
active links model. In the static setting, we show that the only (non-empty) strict Nash
network is the complete network. Moreover, in this network, everyone chooses the same
action, thus social conformism obtains. The only multiplicity that remains again concerns
the choice of action: both outcomes, everyone choosing actiand everyone choosing
action 8, are possible in equilibrium. Our analys$ the (stochastic) dynamics reveals
thatthere is a cut-off value for the cost of forming links (e, f) such that, for alle < ¢,
the risk-dominant actiog prevails, while for allc > ¢ the efficient actiom prevails.This
cut-off value is, somewhat surprisingly, identical to the cut-off value in the one-sided active
links model. It is worth noting, however, that in the two-sided setting the cost of forming
a link is 2c and therefore the precise value of the cut-off level should be interpreted with
care here. What remains, however, as the most interesting observation is the similarity in
the qualitative features of the result: for low costs the risk-dominant action prevails, while
for high costs the efficient action prevails.

4.2. Negative payoffs and link refusal

Throughout the analysis of the basic model we have maintained the assumption that the
(gross) payoffs to be earned by playing the bilateral game are all positive. This justifies
the formulation that, at a zero linking cost, no player should refuse a unilateral proposal to
play this game. But if this cost were positive (and higher than some of the payoffs in the
game) or the game payoffs themselves wegatiee, such a one-sided approach could be
hardly defended as a meaningful or plausible model of network formation.

To address this issue, we have studied an extension of the basic model where, after
any player receives a unilateral link propqghls player may object to forming the link.

It is posited, in particular, that at the stage of possible refusal, the actions chosen by both
players are already irreversibly fixed and ttfere the agent in question can safely evaluate
whether it is profitable or not to accept theoposal. As mentioned, this formulation may
accommodate the case where passive links are costly and/or the payoffs of the bilateral
game display some negative payoffs. And, of course, when passive links are costless and
gross payoffs positive, the basic model studied in this paper follows from that general
(one-sided) framework of network formation as a particular case.

In the context outlined, the main point of our analysis is that efficient state is selected
for large enough costs of forming links. The exact value of the threshold is not generally
the same as in Theorem 3.1. It always lies, however, between the lowest equilibrium payoff
(i.e. payoffb in Table 1) and the lowest payoff in the game (payoff

21 |n this setting we need to make some assumption about the payoff implications of unreciprocated links. In
our analysis, we assume that unreciprocated links involve no costs and yield no benefits either.
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4.3. Indirect links

In the real world, social networks are fanm complete. This happens because there
are a number of factors that limit the riking capacity” of agents and also because
indirect connections often facilitate traniaos and make complete networks unnecessary.
Motivated by these latter considerations, we have explored the roidicéct linkageghat
facilitate transactions between players. As before, the focus is on the architecture of stable
networks and the influence of link formation on the behavior of players.

Consider a model in which two players can play a game if there is a path between them
(recall Section 2.1). Given a netwogkand any two players,and;, let us writei<ij when
a path between them exist. Then, we may defindnitigect neighborhood of a player
by NG g)={jeN: i<5>j}, i.e. the set of players with whom playghas a path in the
networkg. With this notation in place, the payoff to a playdrom choosing some strategy
s; = (gi, a;) when other players choose; = (s1, ..., si—1, Si+1, - . ., Sp) IS given by

Misi,s—)=Y_ m(ai,aj) —v(i;g)-c, (11)
JeNG;)
where recall that (i; g) = [N (i; g)| is the cardinality of the set dafirect links established
by playeri.

In this setting, we find thahe unique stochastically stable architecture is the minimally-
connected network that we call a center-sponsored &arin Fig. 1b). We also find
that there exists a critical cost of forming links, such that, for costs below this level,
players coordinate on the risk-dominant action, while for linking costs above this level they
coordinate on the efficient action. Thus, comparing matters with the basic model, we find a
similar qualitative conclusion concerning the selection of efficiency versus risk dominance
although, naturally, the specific network areltiture that underlies players’ interaction is
very different. A detailed proof of these results can be found in our earlier working paper,
Goyal and Vega-Redondo (1999).

4.4. The costs of forming links

There are two types of assumptions we make on the costs of forming links: the
first assumption is that everyone has the same costs of forming links, while the second
assumption is that these costs are linear érthmber of links. We briefly discuss each of
these assumptions now.

Suppose some players have lower costs of forming links as compared to others. To
fix ideas let there be two cost levels, high and lowci (i.e. ¢c2 > c¢1). Let p be the
fraction of players that have high cost. Clearly, our results from the basic model carry
over directly ifco < e or if ¢c1 > f. We therefore focus our attention on the intermediate
values caseg € (e, f). Supposeb < f and letc € (e, b) be the threshold cost derived
in Theorem 3.1. Defineg = (b —e)/(b—e+d — f) > 1/2. Then, for large:, it may be
shown thatS = $¢ if p > 24 — 1. Itis worth noting that for close to ¥2 this requirement
is weak and is satisfied for fairly small values pf This result therefore suggests an
interesting implication of cost-heterogeneity: consider a population with only low cost
type players where; < ¢ and suppose thatis close to ¥2. Then the stochastically stable



198 S. Goyal, F. Vega-Redondo / Games and Economic Behavior 50 (2005) 178-207

action isg. Now introduce a relatively small numbe&@{. — 1)») of high cost players in this
population. Then, the aforementioned result indicates that the stochastically stable action
changes ta!

In our basic model it is assumed that costs of forming links are linearly increasing in
number of links. This assumption has the implication that either a player wishes to form
no links or is willing to form up torx — 1 links. In effect, therefore there is no constraint
to link formation. It is certainly more realistic to assume that players are constrained in
the number of links they can support due to time and resource constraints. Under this
assumption, stable networks will generally be incomplete and possibly partially connected.
We feel that a model with a limited number of individual links may also be more amenable
to weaker assumptions concerning information on the network and the action profiles of
players, issues which are of course interesting in their own right. For an analysis of the
implications of limited links in the context of the two-sided links model, the reader is
referred to Jackson and Watts (2002).

4.5. The model of mutations

In the basic model, we assume that players choose actions as well as their links at
random with some small probability (in ath words, there is a small probability of
mutation affecting all the different strategy components). It can be argued, however, that
links are more durable and substantial objects and perhaps less subject to this random
choice. And from a technical point of view, it is also a matter of some interest whether our
main insights are robust to this alternative specification of random choice. To explore these
issues, in this section we discuss a model in which the probability of mutation on the links
component of the strategy is set equal to zero.

We start by noting that the possibility of mutations in links is used in the proof of
Theorem 4.1 only at one point: when we show that the $&tand S# are recurrent. In
this context, the mutations in links play a crucial role as they allow for a one-step mutation
across different complete networks. Our idea is to replicate this transition indirectly via
the mutations in actions only. This idea is perhaps simplest to see if the costs of linking
¢ € (f,b). Consider a complete netwosk= (g, a) € §* and suppose tha; ; = 1. We
wish to transit tos’ = (g’, a) € $* in which g =1 The ‘indirect’ transition works as
follows: Let player j's action mutate frora to B. Then let playeri move and choose a
best response. Her best-response is to persist with agti@mcenr is large) and delete
the link with j (because > f). Now get playerj to move: her best response is to switch
action fromg back tox (sincen is large) and form a link with player(sincec < d). This
argument is general and also applies toS.

We now note that this indirect route of transition between different complete networks
in S# does not really work ife < ¢ < f. This is because, the second step in the above
argument does not go through and playéchoosing actiorg) would not find it optimal
to delete the link with playey (with actiona). One way out is to extend the myopic best-
response decision rule to a better-response rule where a player places positive probability
on all actions that yield a payoff as high as the payoff from the current strategy. This reflects
the same spirit as best-response adjustment but is sufficient for our purposes as it allows to
construct the following indirect single step transition. First, suppose that plgyaction



S. Goyal, F. Vega-Redondo / Games and Economic Behavior 50 (2005) 178-207 199

mutates fromB to «. Then, let playei move and choose an at-least-as-good-as-response
in which she persists with actianbut deletes the link witly. This strategy increases her
payoff as compared to the current strategy, sinsee. Now get playerj to move: her best
response is to persist with actign(sincen is large), and form a link with player, since

¢ < f. Finally, allow playeri to move and her best response is to switch back from action
a to B. This completes the one-step transition.

Thus, as explained above, suppose that mutations only affect the actions of players
and that players choose with positive protiagb any strategy that yields (weakly)
higher payoffs as compared to current strategy.d bt the cut-off value considered in
Theorem 3.1. Then, using the above arguments, it is not difficult to show the following
result:If ¢ < ¢ (¢ < ¢) theng () is the unique stochastically stable action, fotarge
enough.

4.6. Simultaneity of actions and links

We assume that players can form links and choose acttmsiltaneously.In
independent works, Droste et al. (1999) and Jackson and Watts (2002) also study a two-
sided link model where directly connected agents play a bilateral game, but allow for
players to choose links and actions separaterevision stages. They find that if the
costs of link formation are high, all those states where players choose a common action
are stochastically stable, i.either of the two actions may obtain. The contrast with our
analysis arises out of the assumption that individuals choose links and actions at separate
stages, i.e. players choose links taking actions as given while they choose actions taking
the links as a given. Instead, in our setting, any individual undertaking a revision is allowed
to modify bothher action and her supported links. Our arguments pertaining to alternative
models of link formation clarify that it is this simultaneity of actions and link formation
decisions and not the one-sided nature of link formation that is critical for the difference in
the results. This would motivate an examination of the effects of varying levels of flexibility
in the two choice dimensions, links and actions—for example, one could allow for the
possibility that link revision might be more rigid than action change.

5. Conclusion

We develop a simple model to study the interaction between partner choice and
individual behavior in games of coordination. We suppose that two players can play a
game only if they have a link between them. Our analysis shows that individual attempts
to balance the costs and benefits of link formation yield a unique network. We also find,
however, that thelynamicsof network evolution have a powerful impact on the nature
of social coordination: at low costs of forming links, individuals coordinate on the risk-
dominant action, while for high costs of forming links individuals coordinate on the
efficient action. These findings are robust to modifications in the link formation process,
different specifications of link formation costs, alternative models of mutations as well as
the possibility of inteaction among indirectly connected players.
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Appendix A

Proof of Proposition 3.1. The proof of part (a) follows directly from the fact that< f
and is omitted. We provide a proof of part (b). In this cg5e: ¢ < b. We first show
thata; =a; = a, if i, j belong to the same component. Suppose ng§;;l&= 1, then it
follows that the player forming a link can profitably deviate by deleting the link, since
¢ > f. Similar arguments apply if and j are indirectly connected. We next show that
if i eg’ andj € g”, whereg’ andg” are two components in an equilibrium netwark
thena; # a;. If a; = a; then the minimum payoff to from playing the coordination game
with j is b. Sincec < b, playeri gains by forming a link, i.e. choosing; = 1. Thusg is
not an equilibrium network. The final step is to note that since there are only two actions
in the coordination game, there can be at most two distinct components. We note that the
completeness of each component follows from the assumption that

We next prove part (c). There are two subcases to congidemax{b, f}orb <c < f.
(Note, of course, that the former subcase is the only one possible if.) Suppose first
that c > max{b, f}, and letg be an equilibrium network which is non-empty but also
incomplete. From the above arguments in (b), it follows thgt if = 1, thena; =a; = «a.
Moreover, ifa; = B, then playerj can have no links in the network. (These observations
follow directly from the hypothesis that > maxb, f}.) However, sinceg is assumed
incomplete, there must exist a pair of agentand j, such thatg;; = 0. First, suppose
thata; = a; = «. Then, since: < d, itis clearly profitable for either of the two players to
deviate and form a link with the other player. Suppose nextthata; = g. Then, players
i andj can have no links and, furthermore, singés non-empty, there must be at least
two other player, [ € N such that, = a; = «. But then player can increase her payoff
by choosing actiom and linking to playek. Finally, consider the case whetgs# a; and
let playeri chooses. Then, if this player deviates to actianand forms a link with player
J she increases her payoff strictly. We have thus shownghat 0 cannot be part of an
equilibrium network. This proves that a n@mpty but incomplete network cannot be an
equilibrium network in the first sub-case considered.

Consider now the cade< ¢ < f and suppose, for the sake of contradiction, that
an equilibrium network which ison-empty but incomplete. Sinde< ¢ < d, it follows
directly that not every player chooses actioor 8. Moreover, in the mixed configuration,
all the players who choose are directly linked (since < d), there is a link between
every pair of players who choose dissimilar actions (sinee f), but there are no links
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between players choosimy(sinceb < ¢). But then it follows that every player choosing
B can increase her payoff by switching to actonrhis contradicts the hypothesis that the
mixed configuration is an equilibrium. This completes the argument for part (c).

Part (d) is immediate from the hypothesisthat d. O

Proof of Proposition 3.2. We start proving part (a). In view of part (a) of Proposition 3.1
and the fact that the underlying game is of a coordination type, the incls&ions? c $*

is obvious. To show the converse inclusion, take any prefgéech that the setd (s) =

{i e N: g =a}andB(s) = {j € N: aj = B} are both non-empty. We claim that suchsan
cannot be an equilibrium.

Assume, for the sake of contradiction, that such a stasea Nash equilibrium of the
game and denote = |A(s)|, 0 < u < n. Recall from Proposition 3.1 that every Nash
network in this parameter range is complete. This implies that for any playdr(s), we
must have

wu—Dd+mn—-we—v@i;g) - c2wu—-1f+m—ub—v(i;g)-c, (12)
and for playerg € B(s),
m—u—0Db+uf —v(j;2)-c2m—u—LDe+ud—v(j;g)-c. (13)

Itis easily verified that (12) and (13) are incompatible.

Now, we turn to part (b). The inclusio* U S# c §* is trivial. To show that the
inclusion is strict for large enough consider a statewhere bothA (s) andB(s), defined
as above, are both non-empty and complete components. Specifically, focus attention on
those configurations that are symmetriithin each component, so that every player in
A(s) supports(u — 1)/2 links and every player irB(s) supports(n —u — 1)/2 links.
(As beforeu stands for the cardinality oA (s) and we implicitly assume, for simplicity,
thatu andn — u are odd numbers.) For this configuration to be a Nash equilibrium, we
must have that the players i(s) satisfy

u—1
2
where we use the fact that, in switching to actgrany player formerly inA (s) will have
to support herself all links to players B(s) and will no longer support any links to other
players inA(s)—of course, she still anticipate playing with those players ftd¢n) who

support links with him.
On the other hand, the counterpart condition for playe®(i) is

dlu—-1)—

c}f%l—i—b(n—u)—c(n—u) (24)

—u—1 —u—1
(n—u—l)b—%c}du—i—e%—cu (15)

where, in this case, we rely on considerations for playerB(i) that are analogous to
those explained before for playersAds). Straightforward algebraic manipulations show
that (14) is equivalent to

u_1 2d—c—f 2(b—c)
_> + b
2b+2d—3c— f

= 16
n n2b+2d—-3c—f (16)
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and (15) is equivalent to
u<1 c+e—2b 2b—c—e

vl , 17
n n2b+2d—3c—e+2b+2d—3c—e (47
We now check that, under the present parameter conditions,
2b —c— 2(b—c
cce . b= (18)
2b+2d —3c—e¢ 2b+2d—3c— f
DenoteY = 2b — ¢, Z = 2b + 2d — 3c, and rewrite the above inequality as
Y — zZ —
£z ° (19)
Y—c Z-f
which is weaker than
Y — zZ —
c.z2”¢ (20)
Y—f  Z-f

sincec > f. The function¢(z) = (z —e)/(z — f) is uniformly decreasing iy since
b > f > e. Therefore sinceY < Z, (20) obtains, which implies (19). Hence it follows
that, if n is large enough, one can find suitable values sfich that (16) and (17) jointly
apply. This completes the proof of part (b).

We now present the proof for part (c). We know from Proposition 3.1 that the complete
and the empty network are the only two possible equilibrium networks. Sineé >
f > e, itisimmediate that, in the complete network, every player must che@sel this
is a Nash equilibrium. Then note that, for th@pty network to be an equilibrium, it should
be the case that no player has an incentive to form a link. This implies that every player
must choosg. On the other hand, it is easy to see that the empty network with everyone
choosingg is a Nash equilibrium.

The proof of part (d) follows directly from the hypothesis- maxd, b, f,e}. O

Proof of Proposition 3.3. It is enough to show that, from any given stafe there is a
finite chain of positive-prolality events (bounded above zesince the number of states
is finite) that lead to a rest point of the best response dynamics.

Choose one of the two strategies, sayand denote byB(0) the set of individuals
adopting actiorB ats®. Order these individuals in some pre-specified manner and starting
with the first one suppose that they are given in turn the option to revise their choices (both
concerning strategy and links). If at any given stagehe playeri in question does not
want to change strategies, we #t + 1) = B(t) and proceed to the next player if some
are still left. If none is left, the first phase ofdlprocedure stops. On the other hand, if the
playeri considered at stage switches froms to «, then we makeB(r + 1) = B()\{i}
and, at stage + 1, re-start the process with the first-ranked individuadia + 1), i.e. not
with the player followingi. Clearly, this first phase of the procedure must eventually stop
at some finitery.

Then, consider the players choosing strateggt 1 and denote this set byt (r1) =
N\B(t1). Proceed as above with a chain of unifalerevision opportunities given to
players adoptingr in some pre-specified sequence, restarting the process when anyone
switches fromx to 8. Again, the second phase of the procedure ends at sometfinite
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By construction, in this second phase, all strategy changes involve an increase in the
number of players adopting, i.e. B(t2) 2 B(t1). Thus, if the network links affecting
players inB(r1) remain unchanged throughout, it is clear that no player in this set would
like to switch toe if given the opportunity at; + 1. However, in general, their network
links will also evolve in this secongdhase, because individual playersdiir;) may form
or delete links with players iB(z1). In principle, this could alter the situation of individual
members o3 (r1) and provide them with incentives to switch frgaro «. It can be shown,
however, that this is not the case. To show it formally, consider any given typical individual
in B(r1) and denote by”, i = «, B, the number of links received (but not supported) by
this player from players choosing actianOn the other hand, denofe= |A(z1)|. Then,
since the first phase of the procedure stopg abne must have

q“j?fjb(qﬁ +7P) + fg* +7) = c(q” +4”)
> ma;(e(qﬁ+fﬁ)+d(q“+f“) —c(q* +4%) (21)
q9%.q
forall g%, ¢# suchthat < g% < i — 7%, 0< ¢# <n—u —1—7#. Now denote by" and
ii the counterpart of the previous magnitudésgndi) prevailing atro. We now show that
i <a, 7 <7 andi? > 78 First, we note thaii < 7 by construction of the process. Next
note that ifF* > 7% then this implies that some player who chooses actidras formed
an additional link with player in the interval betweem; andt,. This is only possible if
¢ < e. It also implies that player did not have a link with this player at. This is only
possible ifc > f, a contradiction. Thug® < 7*. Finally note tha#? > ## follows from
the fact that the all the players choosifigt 71 do not revise their decisions in the interval
betweenr; andro.
Therefore, (21) implies

ma?;(b(qﬁ +7) + f(g* +7*) — c(q* + ")
q9%.q
> maxe(q” +7%) +d(¢* +7*) = c(q* + ")
q9%.q

for all g%, ¢? such that 0< g% < it — 7, 0< ¢ <n — i — 1 —7P. This allows us to
conclude that the concatenation of the two phases will lead the process to a rest point of
the best response dynamics, as desiredl.

Proof of Lemma 3.1. The proof is constructive. Late S, h = «, 8, and order in some
arbitrary fashion all other states if\{s}. Also order in some discretionary manner all
pairs(i, j) € N x N with i # j. For the first state irs”\{s}, saysi, proceed in the pre-
specified sequence across pdits) reversing the links of those of them whose links are
different from what they are in one at a time. This produces a well-defined path joining
s1 to s, whose constituent states define a set denotedhyNext, consider the highest
ranked state ir§"\ 01, says,. Proceed as before, until stateis joined to either state or

a state already included iB1. Denote the states included in the corresponding path by
Clearly, when a stage is reached such théth\(UZ:l Q¢) = ¥, the procedure described
has fully constructed the desiredree restricted t&”. O
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Proof of Lemma3.2. Lets® ands? be generic states i andS?, respectively. We want
to determine the minimum number of mutations needed to transit across a pair of them in
either direction.

(1) First, consider a transition fron? to s* and letk be the number of mutations
triggering it. If this transition is to take pte via the best-response dynamics after those
many mutations, there must be some player currently cho@sing. who hasiotmutated)
that may then voluntarily switch te. As before, denote by” the number of active links
this player supports to players choosibgh = «, ) and letr” stand for the number of
passive links she receives from players chooging = «, 8). The payoff from choosing
« for that player is given by

7o =r%d+rPe4q%(d —c)+qPe—c). (22)
On the other hand, the payoff to choosifigs given by
mp=Ff + P+ G(f — o) +¢ -0, (23)

whereg” and#" have the same interpretation of active and passive links as before, now
associated to the possibility that the player chogse€learly, we havey” = §" and

r" = 7" for eachh = «, . Concerning the passive links, this is immediate; for active
links, it follows from the fact that, since < e, a player will want to create links to all
unconnected players, independently of what they do. Analogous considerations also ensure
that

(i) r*+¢9%“=k,and
(i) rP+gP=n—k—1.

Thus, in sum, for a transition from some statesthto a state inS* to be triggered, one
must have

e —7p=(r* +q*)(d — f) = (rf +4P) (b —e)
=k(d—f)—(m—k—1)(b—e) >0.

Let m#* stand for the minimum number of mutations which lead to such a transition.

The above considerations imply that
b—e

>

d—-fl+m®—e)
which gives us the minimum number of mutations thatrageessaryor a transition from

anystates? to somes®. However, denoting byz] the smallest integer no smaller than
suppose that thetrategieof

ey 1
n—-21
d—f+kB-e)

players undergo a simultaneous mutation from any particular sfatee. these players
maintain their links but switch from to «). Thereafter, the repeated operation of the best-
response dynamics is sufficient to induce a transition to a stat&@hus the necessary

mbe

(n—1), (24)
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number of mutations computed above isoagsifficient to induce a transition from as#
to somes®. That is, the inequality in (24) holds with equality.

(2) Consider on the other hand, the transiti6rto s#. Using the expressions (22) and
(23), we can deduce that the minimum number of mutatie®$ needed to transit from
some state ir§” to a state ins# satisfies

d —
m*P > f (n—1). (25)
d—-f)+b-e)
As in the first case, this gives us the minimum number of mutations needed for a
transition. However, consider any stateand suppose that the strategies of

[ d—f (n—l)—‘
d-f+m®-e

players undergo a simultaneous mutation (i.e. they maintain their links but switchufrom
to B). It again follows that the operation of the best-response dynamics suffices to induce
a transition to a state®. That is, (25) holds with equality.

To conclude, simply note that, if is large enough,

{ boe (n—lﬂ{ - (n—l)w,
d-—f)+b-e) d—=f)+b-e)
sinced — f<b—e. O

Proof of Lemma 3.4 (Sketch). The proof proceeds in the same way as the proof of
Lemma 3.3. We therefore only spell out the main computations.

(1) First, consider transitions from staté to states® and letk be the number of
mutations triggering it. We focus on a player currently choogingnd aim at finding
the most favorable (i.e. least mutation-costly) conditions that would induce him to switch
to «. Along the lines explained in the proof of Lemma 3.3, this leads to the following lower
bound:

mbe > b-c (n—1)=H, (26)
d-fl+®-oc

which again can be seen to be tight in the sense that, inidect,= (H)—recall that[z]
stands for the smallest integer no smaller than

(2) Analogous considerations for a transition from si&téo states? leads to the lower
bound

-y S d—c
b—e)+(d—c)
which is also tight, i.em?* = [H'].

(3) Finally, to study how the sign @##® — m*# changes for large as a function of:,
note that

n—-1)=H (27)

b—c)Yb—e)—(d— f)d—
H—H =Ac)= b—-c)b—e)—(d— f)d—o) (n—1). (28)
[(d—H+G—-llb—e)+ (d—0o)]
Observe that the denominator &fc) is always positive, the numerator is decreasing,in
and is moreover negative at= b. This completes the proof.0
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Proof of Lemma 3.5. Fix somes € S*#, with the playersA(s) and B(s) of thea andp
components displaying respective cardinalitidgs)| = u > 0 and|B(s)| =n —u > 0,
respectively. To address the first part of the lemma, suppose that a play@t(s)
experiences a mutation, which has the effect of switching her action fréorw and the
deletion of all her links with players iB(s). Now consider the players in the s&¢s)\{i}.
There are two possibilities: either all of them wish to retain acfior there is a player
who wishes to switch actions.

In the former case, let all of them move and they will retain their earlier strategy except
for one change: they will each delete their link with playesincef < ¢ < b. We now get
players inA(s) to move and they all form a link with playérsincef <c < b <d. It may
be checked that we have reached an equilibrium stateith A(s") > A(s) + 1.

Consider now the second possibility. Pick a player B(s)\{i}, who wishes to switch
actions fromg to «. It follows that this player will delete all her links with players #{(s)
and form links with all players im(s) (sincee < f < ¢ < b < d). We then examine the
incentives of the players still choosing actigni.e., players in the sa®(s)\{i, j}. If there
are no players who would like to switch actions then we repeat step above and arrive at a
new state with a larger-component. If there are players who wish to switch actions from
B to o then we get them to move one at a time. Eventually, we arrive at either a new state
s’ € §%F or we arrive at a stat€ € S*.

In either case, we have shown that starting from a states*-#, we can move with
a single mutation to a staté such thatA(s’) > A(s) + 1. Sinces € S*# was arbitrary,
the proof is complete for the first part. The second conclusion concerning some new
equilibrium state” with |A(s”)| < |A(s)| — 1 is analogous. O
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