Corso di Teoria delle Decisioni

Esercitazioni


Lezione $2 - \frac{22}{09}/04$

Docente: S.Moretti

http://www.dima.unige.it/~moretti/

Sommario decisioni in condizioni di certezza

- Un insieme di oggetti X (panieri di beni)
- Una relazione \geq su X e' un *preordine totale* se

- •Una relazione \succ su X e' *asimmetrica* se non esiste una coppia $x,y \in X$ tale che $x \succ y$ e $y \succ x$
- •Una relazione \succ su X e' negativamente transitiva se per ogni x,y,z \in X tale che non[x \succ y] e non[y \succ z] implica non[x \succ z]

Esercizio 1:

dimostrare che la definizioni date di asimmetria e transitività negativa corrispondono alle seguenti:

- asimmetria: per ogni $x,y \in X$, $x \succ y \Rightarrow non[y \succ x]$;
- transitività negativa: per ogni $x,y \in X$, se $x \succ y \Rightarrow x \succ z o z \succ y$ per ogni $z \in X$.
 - •Ricordo data ≻ su X possiamo definire ≽ come segue

Per ogni
$$x,y \in X$$
, $non(y \succ x) \Rightarrow x \succcurlyeq y$

•Oppure data \geq su X possiamo definire \succ come segue

Per ogni
$$x,y \in X$$
, $non(y \succ x) \Leftarrow x \succcurlyeq y$

Teorema. Siano \succ e \succcurlyeq relazioni su X tali che per ogni $x,y \in X$, non $(y \succ x) \Leftrightarrow x \succcurlyeq y$. Allora

- $1- \succ$ è asimmetrica $\Leftrightarrow \succ$ è totale
- 2- ≻ è negativamente transitiva ⇔ ≽ è transitiva **Dimostrazione**.

 \Rightarrow

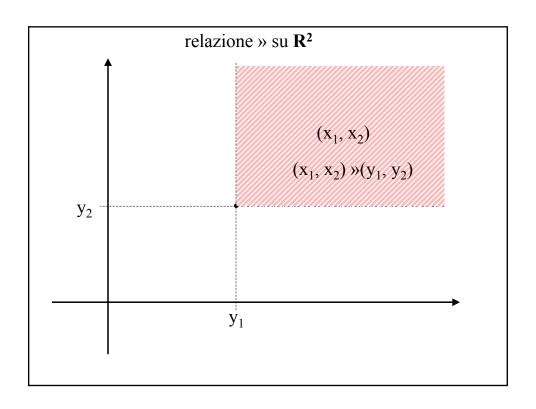
- 1- dall'asimmetria non esiste coppia $x,y \in X$ tale che $x \succ y$ e $y \succ x$. Quindi deve essere vero non $[x \succ y]$ o non $[y \succ x]$ o entrambi. Perciò per ogni $x,y \in X$ si deve avere $y \succcurlyeq x$ o $x \succcurlyeq y$. Quindi \succcurlyeq è totale.
- 2- utilizzando la definizione di \geq , la transitivita' negativa di \geq diventa: per ogni x,y,z \in X tale che x \geq y e y \geq z implica x \geq z. Questa e' la transitività di \geq .

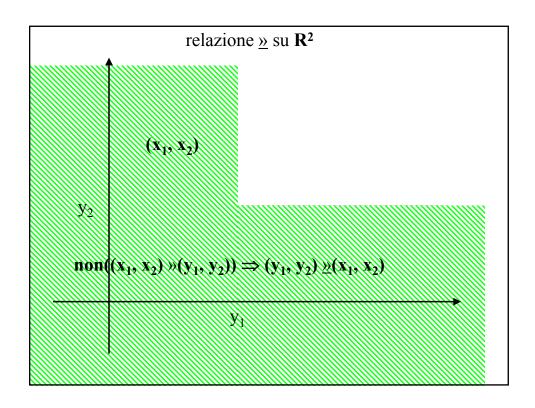
Esercizio 2: provare \Leftarrow .

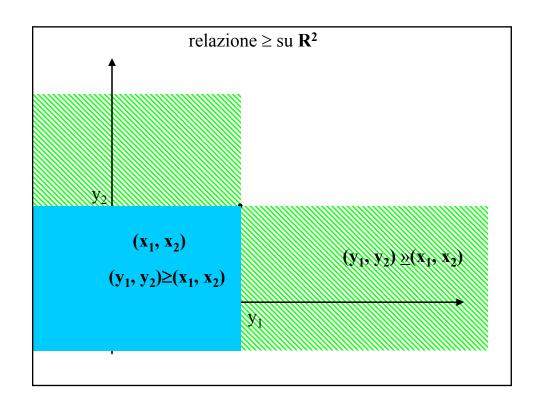
Esercizio:

• Definiamo su ${\bf R^2}$ la relazione » tale che per ogni (x_1, x_2) , $(y_1, y_2) \in {\bf R^2}$ si ha

$$(x_1, x_2) > (y_1, y_2) \Leftrightarrow (x_1 > y_1) e (x_2 > y_2)$$

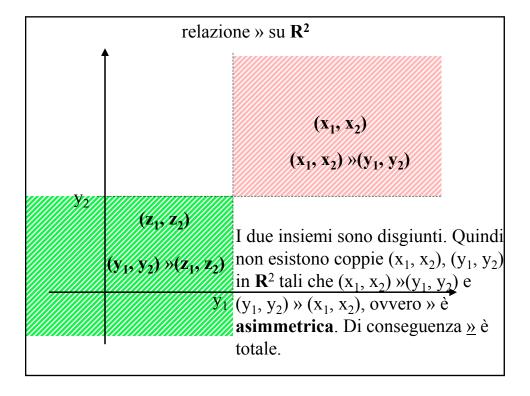

• A partire da », definiamo su \mathbb{R}^2 la relazione » tale che per ogni $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$ si ha

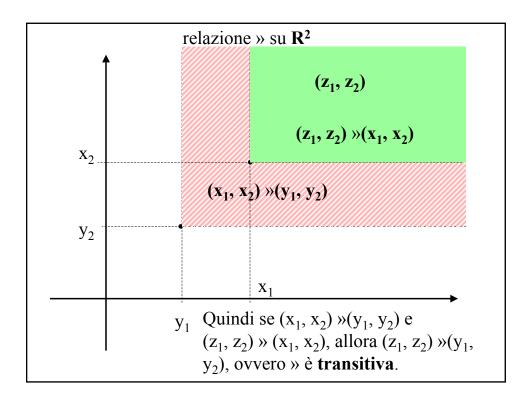

$$non((y_1, y_2) \gg (x_1, x_2)) \Leftrightarrow (x_1, x_2) \geq (y_1, y_2)$$

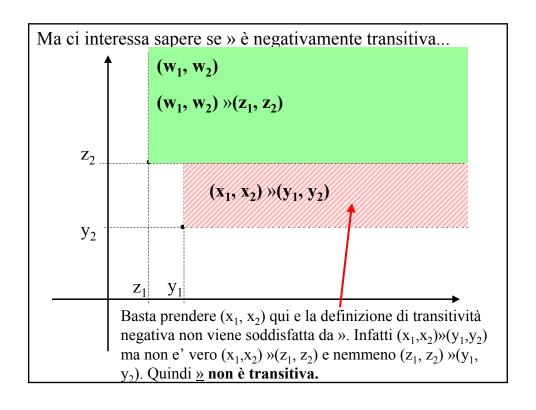

• Infine definiamo su ${\bf R}^2$ la relazione \geq tale che per ogni $(x_1,x_2),\,(y_1,\,y_2)\in {\bf R}^2$ si ha

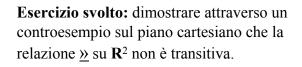
$$(x_1, x_2) \ge (y_1, y_2) \Leftrightarrow (x_1 \ge y_1) e(x_2 \ge y_2)$$

Domanda: ci aspettiamo, per analogia con quanto accade per l'ordinamento naturale su \mathbf{R} , che \geq e \geq siano la stessa relazione su \mathbf{R}^2 ?

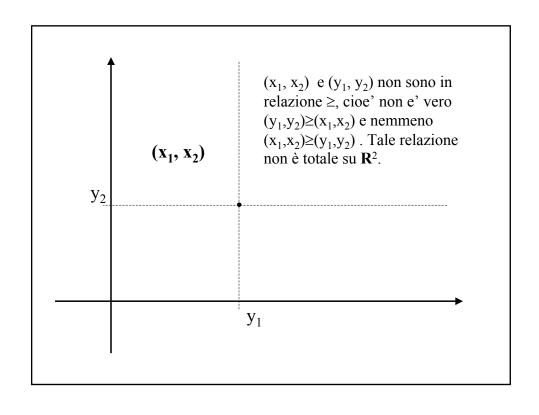





Domanda: ci aspettiamo, per analogia con quanto accade per l'ordinamento naturale su \mathbf{R} , che \geq e \geq siano la stessa relazione su \mathbf{R}^2 ?


Risposta (ovvia, adesso): No.

Nuova domanda: Quale tra le due relazioni \geq e \geq rappresenta un preordine totale su \mathbb{R}^2 ?



$$(w_1, w_2), t.c.(z_1, z_2) \times (w_1, w_2)$$

Basta prendere (x_1, x_2) qui e la definizione di transitività non viene soddisfatta da \underline{w} . Infatti $(y_1, y_2) \underline{w}(z_1, z_2)$, (z_1, z_2) , $\underline{w}(x_1, x_2)$ ma non e' vero $(y_1, y_2) \underline{w}(x_1, x_2)$.

Domanda: ci aspettiamo, per analogia con quanto accade per l'ordinamento naturale su **R**, che ≥ e <u>»</u> siano la stessa relazione su **R**²?

Risposta (ovvia, adesso): No.

Nuova domanda: Quale tra le due relazioni \geq e \geq rappresenta un preordine totale su \mathbb{R}^2 ?

Risposta: Nessuna delle due.

Esercizio 4: La relazione \geq Su \mathbb{R}^2 è asimmetrica? E' un ordinamento Su \mathbb{R}^2 ?

L'approccio RESCON

- RESCON è l'aproccio utilizzato dalla World Bank per valutare diversi progetti inerenti alla gestione delle dighe (con particolare riguardo ai sedimenti che ne derivano)
- La WB sceglie il progetto che massimizza il NPV (Net Present Value) tra quelli che soddisfano un vincolo di *safeguard* imposto dalla WB stessa in relazione alla situazione ed alla sua politica.
- Ogni progetto viene valutato sulla base dell'impatto sociale e ambientale, individuando 6 diverse tipologie di impatto: Natural Habitats, Human Uses, Resettlement, Cultural Assets, Indigenous Peoples, Trans-boundary Impacts.
- Per ognuna delle 6 tipologie viene stimato l'entita' del danno su una scala che va da 1 a 4 Safeguard Ratings for Each Sediment | Safeguard

Management Strategy	Ratings
No impact and potential benefits	1
Minor impact	2
Moderate impact	3
Significant impact	4

			Resettlem ent		Indigenou s People	Transboundary Impacts		Policy level of the project	
p1	1	1	1	1	1	1	6	Α	
p2	2	1	1	2	1	2	9	В	
р3	1	2	2	1	3	1	10	С	
p4	1	1	4	1	3	3	13	?	
p5	2	2	2	2	2	2	12	?	
р6	3	1	1	1	1	1	8	?	

Tabella 2

Safeguard Policy Criteria	Interpretation	Policy Level
6	No impact and potential benefits	A
7 to 11, with no 3's	Minor impact	В
12 to 15 or at least one 3	Moderate impact	С
16 or higher, or at least 4.	Significant impact	D

Esercizio 4: Completare la tabella in alto ponendo il livello di policy in accordo al criterio riportato nlla tabella 2. Le classi A,B,C e D rappresentano classi di indifferenza sull'insieme dei progetti per il decisore? Se si', in che termini si potrebbe parlare di preferenze del decisore sui progetti e quale potrebbe essere una rappresentazione numerica di tali preferenze?