1 Modellizzazione di un problema di decisione

$$X \xrightarrow{h} E \xrightarrow{u} \mathbb{R}$$

L'insieme X è l'insieme delle alternative (scelte, decisioni, azioni...).

La funzione h rappresenta il dato oggettivo, che lega le alternative alle conseguenze.

Data l'alternativa $x \in X$, h(x) identifica la sua conseguenza.

La funzione u rappresenta la valutazione soggettiva che l'individuo dà del risultato

Data una conseguenza $e \in E$, u(e) identifica la valutazione che il decisore fa della conseguenza e

La composizione u(h(x)), che indicherò con f(x), mappa direttamente la alternativa x nella sua valutazione.

Si noti. Stiamo considerando una situazione:

- DETERMINISTICA (non sono coinvolti elementi di rischio/incertezza)
- UNICO DECISORE (contrapposto al caso in cui siano presenti più decisori)
- UNI-DIMENSIONALE (contrapposto ai problemi di decisione multiobiettivo)

Estensione. Considerare:

$$(X_1 \times X_2 \dots \times X_m) \times S \xrightarrow{h} E \xrightarrow{u} (\mathbb{R} \times \mathbb{R} \dots \times \mathbb{R})$$

 $X_1 \times X_2 \ldots \times X_m$ ci permette di considerare più decisori

 ${\cal S}$ ci consente di tenere presenti gli aspetti non deterministici

 $\mathbb{R}\times\mathbb{R}\ldots\times\mathbb{R}$ ci permette di considerare sia il caso di più decisori che di più criteri

Cominciamo col caso delle decisioni in condizioni di rischio o incertezza. Consideriamo:

$$(X \times S) \stackrel{h}{\longrightarrow} E$$

Gli elementi di S li interpretiamo come "stati di natura"

$X \setminus S$	s_1	 s_r
x_1		
$\overline{x_m}$		

Riempiamo la tabella con le conseguenze:

$X \setminus S$	s_1	 s_r
x_1	e_{11}	 e_{1r}
x_m	e_{m1}	 e_{mr}

 e_{ij} rappresenta la conseguenza della azione "i" e dello stato di natura "j"

Se vogliamo mettere in evidenza il legame esistente tra scelte e stati di natura da una parte e conseguenze dall'altra, possiamo usare la funzione h:

$X \setminus S$	s_1	 s_r
$\overline{x_1}$	$h(x_1, s_1)$	 $h(x_1, s_r)$
$\overline{x_m}$	$h(x_m, s_1)$	 $h(x_m, s_r)$

Introduciamo la valutazione del decisore, ovvero $u: E \longrightarrow \mathbb{R}$:

$X \setminus S$	s_1	 s_r
x_1	$u(e_{11})$	 $u(e_{1r})$
x_m	$u(e_{m1})$	 $u(e_{mr})$

Possiamo sintetizzare, usando la funzione f:

$$\begin{array}{ccc} X\times S \stackrel{h}{\longrightarrow} E \stackrel{u}{\longrightarrow} \mathbb{R} \\ & X\times S \stackrel{f}{\longrightarrow} \mathbb{R} \end{array}$$

$X \setminus S$	s_1	 s_r
$\overline{x_1}$	$f(x_1, s_1)$	 $f(x_1, s_r)$
$\overline{x_m}$	$f(x_m, s_1)$	 $f(x_m, s_r)$

Un primo esempio di aggregazione:

VALORE ATTESO

Ad ogni alternativa $x \in X$ associamo:

$$\sum_{k=1}^{r} p(s_k) f(x, s_k)$$

Il fattore $p(s_k)$ indica la probabilità che assegniamo allo stato s_k .

Due casi:

- rischio (la probabilità è oggettiva)
- incertezza (la probabilità è soggettiva)

Vediamo ora il caso delle decisioni in cui vi siano più criteri. Consideriamo:

$$X \xrightarrow{h} E \xrightarrow{u} (\mathbb{R} \times \mathbb{R} \dots \mathbb{R})$$

Riscriviamo la tabella "vuota":

$X \setminus S$	s_1	 s_r
x_1		
$\overline{x_m}$		

Riempiamo la tabella con le conseguenze:

$X \setminus S$	s_1	 s_r
x_1	e_{11}	 e_{1r}
x_m	e_{m1}	 e_{mr}

Qui le varie colonne possono rappresentare:

- i vari soggetti ("stakeholders")
- i vari criteri (decisione multi-obiettivo)
- i vari "tempi" (decisioni finanziarie)

 e_{ij} rappresenta la conseguenza della azione "i" per "j"

Se vogliamo mettere in evidenza il legame esistente tra scelte e stati di natura da una parte e conseguenze dall'altra, possiamo usare la funzione h:

$X \setminus S$	s_1	 s_r
x_1	$h_1(x_1)$	 $h_r(x_1)$
$\overline{x_m}$	$h_1(x_m)$	 $h_r(x_m)$

Introduciamo le valutazione dei decisori, ovvero i vari criteri, ovvero le valutazioni ai vari tempi $u_j: E \longrightarrow \mathbb{R}$:

$X \setminus S$	s_1	 s_r
$\overline{x_1}$	$u_1(e_{11})$	 $u_r(e_{1r})$
$\overline{x_m}$	$u_1(e_{m1})$	 $u_r(e_{mr})$

Possiamo sintetizzare, usando le funzioni f_j :

$$X \xrightarrow{h} E \xrightarrow{u_j} \mathbb{R}$$
$$X \times S \xrightarrow{f_j} \mathbb{R}$$

$X \setminus S$	s_1	 s_r
x_1	$f_1(x_1)$	 $f_r(x_1)$
x_m	$f_1(x_m)$	 $f_r(x_m)$

Altri due esempi di aggregazione:

VALORE ATTUALE

Ad ogni alternativa $x \in X$ associamo:

$$\sum_{k=1}^{r} \nu^k f_k(x)$$

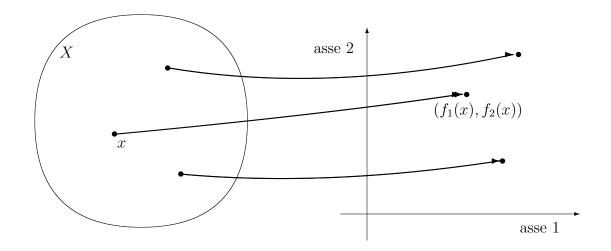
 ν indica il fattore di sconto, e pertanto il fattore ν^k indica quanto vale "ora" una somma monetaria in entrata o uscita al tempo ("anno") k.

SCALARIZZAZIONE IN OTTIMIZZAZIONE MULTI-CRITERIO

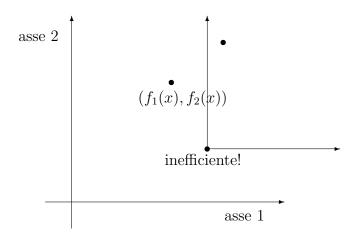
Ad ogni alternativa $x \in X$ associamo:

$$\sum_{k=1}^{r} \alpha_k f_k(x)$$

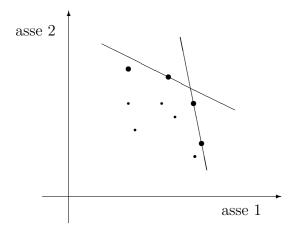
 α_k indica il "peso" che assegniamo allo "stakeholder" k,ovvero al criterio k.



Vediamo i valori ottenuti:



Vediamo i valori ottenuti:



Vediamo in figura la scelta di due sistemi diversi di pesi. Naturalmente, l'uso di sistemi di pesi diversi può avere come effetto che vengano scelte delle alternative diverse.